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Abstract—This paper examines synchronization of computer
clocks connected via a data network and proposes a skewless
algorithm to synchronize them. Unlike existing solutions, which
either estimate and compensate the frequency difference (skew)
among clocks or introduce offset corrections that can generate
jitter and possibly even backward jumps, our solution achieves
synchronization without these problems. We first analyze the
convergence property of the algorithm and provide explicit nec-
essary and sufficient conditions on the parameters to guarantee
synchronization. We then study the effect of noisy measurements
(jitter) and frequency drift (wander) on the offsets and synchro-
nization frequency, and further optimize the parameter values
to minimize their variance. Our study reveals a few insights, for
example, we show that our algorithm can converge even in the
presence of timing loops and noise, provided that there is a well
defined leader. This marks a clear contrast with current stan-
dards such as NTP and PTP, where timing loops are specifically
avoided. Furthermore, timing loops can even be beneficial in our
scheme as it is demonstrated that highly connected subnetworks
can collectively outperform individual clients when the time
source has large jitter. The results are supported by experiments
running on a cluster of IBM BladeCenter servers with Linux.

I. INTRODUCTION

Keeping consistent time among different nodes in a network
is a fundamental requirement of many distributed applications.
Nodes’ internal clocks are usually not accurate enough and
tend to drift apart from each other over time, generating
inconsistent time values. Network clock synchronization al-
lows these devices to correct their clocks to match a global
reference of time, such as the Universal Coordinated Time
(UTC), by performing time measurements through a network.
For example, for the Internet, network clock synchronization
has been an important subject of research and several different
protocols have been proposed [2]–[8]. These protocols are
used for various applications with diverse precision require-
ments such as banking transactions, communications, traffic
measurement and security protection. For example, in modern
wireless cellular networks, time-sharing protocols need an
accuracy of several microseconds to guarantee the efficient
use of channel capacity. Another example is the recently an-
nounced Google Spanner [9], a globally-distributed database,
which depends on globally-synchronized clocks within at most
several milliseconds drifts.

The current de facto standard for IP networks is the Network
Time Protocol (NTP) proposed by David Mills [2]. It is
a low-cost, purely software-based solution whose accuracy
mostly ranges from hundreds of microseconds to several
milliseconds. On the other hand, IEEE 1588 (PTP) [4] gives
superior performance by achieving sub-microsecond or even
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nanosecond accuracy. However, it is relatively expensive as it
requires special hardware support to achieve those accuracy
levels and may not be fully compatible with legacy cluster
systems.

Newer synchronization protocols have been proposed with
the objective of balancing between accuracy and cost. For
example, IBM Coordinated Cluster Time (CCT) [10] is able
to provide better performance than NTP without additional
hardware. Its success is based on a skew estimation mecha-
nism [11] that progressively adapts the clock frequency with-
out offset corrections. Another alternative is the RADclock [5],
[8] which estimates the skew and produces offset corrections,
but provides a secondary relative clock that is more robust to
jitter.

There are two major difficulties that make the network clock
synchronization problem challenging. Firstly, the frequency
of hardware clocks is sensitive to temperature and is con-
stantly varying. Secondly, the latency introduced by the OS
and network congestion delay results in errors in the time
measurements which can be propagated through the network.
Thus, most protocols introduce different ways of estimating
the frequency mismatch (skew) [11], [12] and measuring
the time difference (offset) [13], [14] while maintaining a
simple network topology [2], [4]. This leads in particular to
extensive literature on skew estimation [12], [15]–[17] which
suggests that explicit skew estimation is necessary for clock
synchronization.

This paper takes a different approach and shows that fo-
cusing on skew estimation could be misleading. We provide
a simple algorithm that is able to compensate the clock skew
without any explicit estimation of it. Our algorithm only uses
current offset information and an exponential average of the
past offsets. Thus, it neither needs to store long offset history
nor perform expensive computations on them. The solution
provided in this paper solves problems present on IBM CCT
and RADclock. We are able to achieve microsecond level
accuracy without requiring any special hardware as the previ-
ous solutions. Since our protocol does not explicitly estimate
the skew, which makes the implementation simpler and more
robust to jitter than IBM CCT, and does not introduce offset
corrections, which avoids the need of a secondary clock as in
RADclock.

By looking at the synchronization problem from a new
angle, this paper provides several new insights. For example,
a common practice in the clock synchronization community is
to avoid timing loops in the network [2, p. 3] [4, p. 16, s. 6.2].
This is because it is thought that timing loops can introduce
instability as stated in [2]: ”Drawing from the experience of
the telephone industry, which learned such lessons at consider-
able cost, the subnet topology... must never be allowed to form
a loop.” Even though for some parameter values loops can
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produce instability, we show that a set of proper parameters
can guarantee convergence even in the presence of loops.
Furthermore, we experimentally demonstrate in Section VI
that timing loops among clients can actually help reduce the
jitter of the synchronization error and is therefore desirable.

The rest of the paper is organized as follows. In Section II
we provide some background on how clocks are actually im-
plemented in computers and how different protocols discipline
them. Section III motivates and describes our algorithm to-
gether with an intuitive explanation of why it works. In Section
IV, we analyze the convergence property of the algorithm and
determine the set of parameter values and connectivity patterns
under which synchronization is guaranteed. The parameter
values that guarantee synchronization depend on the network
topology, but there exists a subset of them that is indepen-
dent of topology and therefore of great practical interest.
The effect of noisy measurement and wander is studied in
Section V, together with an optimization procedure that finds
optimal parameter values. Experimental results evaluating the
performance of the algorithm are presented in Section VI. We
conclude in Section VII.

II. COMPUTER CLOCKS AND SYNCHRONIZATION

Most computer architectures keep their own estimate of
time using a counter that is periodically increased by either
hardware or kernel’s interrupt service routines (ISRs). On
Linux platforms for instance, there are usually several different
clock devices that can be selected as the clock source by
changing the clocksource kernel parameter. One particular
counter that has recently been used by several clock synchro-
nization protocols [5], [10] is the Time Stamp Counter (TSC)
that counts the number of CPU cycles since the last restart
of the system. For example, in the IBM BladeCenter LS21
servers, the TSC is a 64-bit counter that increments every
δo = 0.416ns since the CPU nominal frequency fo = 1/δo =
2399.711MHz.

Based on this counter, each server builds its own estimate
xi(t) of the global time reference, UTC, denoted here by t.
For example, if ci(t) denotes the counter’s value of computer
i at time t, then xi(t) can be computed using

xi(t) = δoci(t) + xoi , (1)

where xo is the estimate of the time when the server was
turned on (t0).

Thus, synchronizing computer clocks implies correcting
xi(t) in order to match t, i.e. enforcing xi(t) = t. There
are two difficulties on this estimation process. Firstly, the
initial time t0 in which the counter starts its unknown.
Secondly, the counter updating period δi (δi ≈ δ0) is usually
unknown with enough precision and therefore presents a skew
ri = xi(t)−xi(t0)

t−t0 . This is illustrated in Figure 1a where xi(t)
not only increases at a different rate than t, but also starts
from a value different from t0, represented by xoi .

In practice, ci(t) can be approximated by a real values since
the time between increments is extremely small (0.416ns) and
the maximum count register value so large (264 − 1) that it
would take more than 200 years to reach. Therefore, xi(t) can
be described by the linear map of the global reference t, i.e.

xi(t) = ris
o
i (t− t0) + xoi , (2)

where soi is an additional skew correction implemented to
compensate the skew and ri = δo

δi
; in Figure 1a soi = 1.

Equation (2) also shows that if one can set soi = 1/ri and
xoi = t0, then we obtain a perfectly synchronized clock with
xi(t) = t.
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Fig. 1: Time estimation and relative measurements

The main problem is that not only neither t0 nor ri can
be explicitly estimated, but also ri varies with time as shown
in Figure 2a. Thus, current protocols periodically update soi
and xoi in order to keep track of the changes of ri. These
updates are made using the offset between the current estimate
xi(t) and the global time t, i.e. Dx

i (t) = t − xi(t), and the
relative frequency error that is computed using two offset
measurements separated by τ seconds, i.e.

ferri (t) :=
Dx
i (t)−Dx

i (t− τ)

xi(t)− xi(t− τ)
=

1− risoi
risoi

. (3)

Figure 1b provides an illustration of these measurements.

0 0.5 1 1.5 2 2.5
−300

−200

−100

0

100

200

t (days)

R
es
id
u
a
l
O
ff
se
t
(µ

s)

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

L
in
ea

r
F
it

(m
s)

(a) Offset between two TSC counters:
The straight line is a linear fit that is
subtracted from the offset values in
residual offset axis

0 50 100 150 200 250 300

0

20

40

t (s)

O
ff
se
t
(µ

s)

(b) Example of skew and offset cor-
rections on linux time: First a 20µs
offset is added and subtracted and
then a skew of 0.3ppm is introduced

Fig. 2: Comparison between two TSC counters, and skew and
offset corrections using adjtimex()

To understand the differences between current protocols,
we first rewrite the evolution of xi(t) based only on the time
instants tk in which the clock corrections are performed. We
allow the skew correction soi to vary over time, i.e. si(tk), and
write xi(tk+1) as a function of xi(tk). Thus, we obtain

xi(tk+1) = xi(tk) + τrisi(tk) + uxi (tk) (4a)
si(tk+1) = si(tk) + usi (tk) (4b)

where τ = tk+1− tk is the time elapsed between adaptations;
also known as poll interval [2]. The values uxi (tk) and usi (tk)
represent two different types of corrections that a given
protocol chooses to do at time tk and are usually implemented
within the interval (tk, tk+1). uxi (tk) is usually referred to as
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Fig. 3: Variations of NTP time using TSC as reference
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Fig. 4: Current Protocols Adaptation

offset correction and usi (tk) as skew correction.1 See Figure
2b for an illustration of their effect on the linux time.

We now proceed to summarize the different types of adapta-
tions implemented by current protocols. The main differences
between them are whether they use offset corrections, skew
corrections, or both, and whether they update using offset
values Dx

i (tk), relative frequency errors ferri (tk), or both.

A. Offset corrections
These corrections consist in keeping the skew fixed and

periodically introducing time changes of size uxi (tk) =
κ1D

x
i (tk) or uxi (tk) = κ1D

x
i (tk)+κ2f

err
i (tk) where κ1, κ2 >

0. They are used by NTPv3 [18] and NTPv4 [2] respectively
under ordinary conditions.

These protocols have in general a slow initialization period
as shown in Figure 3a. This is because the algorithm must first
obtain a very accurate estimate of the initial frequency error
ferri (t0). Furthermore, these updates usually generate non-
smooth time evolutions as in Figures 3b and 4a, and should
be done carefully since they might introduce backward jumps
(xi(tk+1) < xi(tk)), which can be problematic for some
applications.

B. Skew corrections
Another alternative that avoids using steep changes in time

is proposed by the IBM CCT solution [10]. This alternative
does not introduce any offset correction, i.e. uxi (tk) = 0, and
updates the skew si(tk) by usi (tk) = κ1D

x
i (tk) +κ2f

err
i (tk).

The behavior of this algorithm is shown in Figure 4b.
In [19] it was shown for a slightly modified version of it
(used risi(tk)ferri (tk) instead of ferri (tk)) the algorithm can
achieve synchronization for very diverse network architec-
tures.

1These corrections can be implemented in Linux OS using the adjtimex()
interface to update the system clock or by maintaining a virtual version of
xi(t) and directly applying the corrections to it, as in IBM CCT [10] and
RADclock [5]. The latter gives more control on how the corrections are
implemented since it does not depend on kernel’s routines.
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Fig. 5: Unstable clock steering using only offset information
(5) and stable clock steering based on exponential average
compensation (7)

However, the estimation of ferri (tk) is nontrivial as it is
constantly changing with subsequent updates of si(tk) and it
usually involves sophisticated computations [11], [12].

C. Skew and offset corrections
This type of corrections allow dependence on only offset in-

formation Dx
i (tk) as input to uxi (tk) and usi (tk). For instance,

in [6] the update uxi (tk) = κ1D
x
i (tk) and usi (tk) = κ2D

x
i (tk)

was proposed.
This option allows the system to achieve synchronization

without any skew estimation. But the cost of achieving it, is
introducing offset corrections in xi(t) as shown in Figure 4c.
Therefore, it suffers from the same problems discussed in II-A.

III. CONTINUOUS SKEWLESS SYNCHRONIZATION

We now present an algorithm that overcomes the limitations
of the solutions described in Section II. In other words, our
solution has the following two properties:

1) Continuity: The protocol does not introduce steep
changes on the time value, i.e. uxi (tk) ≡ 0.

2) Skew independence: The protocol does not use skew
information ferri (tk) as input.

A solution with these properties will therefore prevent unnec-
essary offset corrections that produce jitter and will be more
robust to noise by avoiding skew estimation. After describing
and motivating our algorithm, we show how the updating rule
can be implemented in the context of a network environment.

The motivation behind the proposed solution comes from
trying to compensate the problem that arises when one tries
to naively impose properties 1) and 2), i.e. using

uxi (tk) = 0 and usi (tk) = κ1D
x
i (tk). (5)

Figure 5 shows that this type of clock corrections is unsta-
ble; the offset Dx

i (tk) of the slave clock oscillates with an
exponentially increasing amplitude.

The oscillations in Figure 5 arise due to the fundamental
limitations of using offset to update frequency. This is better
seen in the continuous time version of the system (4) with (5),
i.e.

ẋi(t) = risi(t) and ṡi(t) = κ1D
x
i (t)

where ẋ(t) = d
dtx(t). If we consider the offset Dx

i = t−xi(t)
as the system state, then we have

Ḋx
i = 1− risi and D̈x

i = −κ1riD
x
i ,

with ẍ(t) = d2

dt2x(t).
This is analogous to a spring mass system without friction.

Thus, it has two purely imaginary eigenvalues that generate
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sustained oscillations; see [7], [20] for similar examples.2 One
way to damp these oscillations in the spring-mass case is by
adding friction. This implies adding a term that includes a
frequency mismatch ferri (t) in our system, which is equivalent
to the protocols of Section II-B, and therefore undesired.

However, there are other ways to damp these oscillations
using passivity-based techniques from control theory [21],
[22]. The basic idea is to introduce an additional state yi that
generates the desired friction to damp the oscillations.

Inspired by [21], we consider the exponentially weighted
moving average of the offset

yi(tk+1) = pDx
i (tk) + (1− p)yi(tk). (6)

and update xi(tk) and si(tk) using:

uxi (tk) = 0 and usi (tk) = κ1D
x(tk)− κ2y(tk). (7)

Figure 5 shows how the proposed strategy is able to compen-
sate the oscillations without needing to estimate the value of
ferri (tk). The stability of the algorithm will depend on how
κ1, κ2 and p are chosen. A detailed specification of these
values is given in Section IV-B.

Finally, since we are interested in studying the effect of tim-
ing loops, we move away from the client-server configuration
implicitly assumed in Section II and allow mutual or cyclic
interactions among nodes. The interactions between different
nodes is described by a graph G(V,E), where V represents
the set of n nodes (i ∈ V ) and E the set of directed edges
ij; ij ∈ E means node i can measure its offset with respect
to j, Dx

ij(tk) = xj(tk)− xi(tk).
Within this context, a natural extension of (6)-(7) is to

substitute Dx
i (tk) with the weighted average of i’s neighbors

offsets. Thus, we propose the following algorithm to update
the clocks in the network.

Algorithm 1 (Alg1): For each computer node i in the network,
perform the following actions:
- Compute the time offsets (Dx

ij(tk)) from i to every neighbor
j at time tk.

- Update the skew si(tk+1) and the moving average yi(tk+1)
at time tk+1 according to:

si(tk+1) =si(tk) + κ1

∑

j∈Ni

αijD
x
ij(tk)− κ2yi(tk) (8a)

yi(tk+1) =p
∑

j∈Ni

αijD
x
ij(tk) + (1− p)yi(tk) (8b)

whereNi represents the set of neighbors of i and the weights
αij are positive.

Using this algorithm, many servers can affect the final
frequency of the system. Thus, when the system synchronizes,
we have

xi(tk) = r∗(tk − t0) + x∗ i ∈ V. (9)

r∗ and x∗ are possibly different from their ideal values 1 and
t0. Their final values depend on the initial condition of all
different clocks as well as the topology, which we assume to
be a connected graph in this paper.

2In the discrete time system the oscillations increase in amplitude since
there is a delay between the time the offset is measured tk and the time the
update is made tk+1 which makes the system unstable.

IV. CONVERGENCE ANALYSIS

We now analyze the asymptotic behavior of system (8) and
provide a necessary and sufficient condition on the parameter
values that guarantee its convergence to (9). The techniques
used are drawn from the control literature, e.g. [6] and [19],
yet its application in our case is nontrivial.

Notation: We use 0m×n (1m×n) to denote the matrices
of all zeros (ones) within Rm×n and 0n (1n) to denote
the column vectors of appropriate dimensions. In ∈ Rn×n
represents the identity matrix. Given a matrix A ∈ Rn×n with
Jordan normal form A = PJP−1, let nA ≤ n denote the total
number of Jordan blocks Jl with l ∈ I(A) := {1, ..., nA}.
We use µl(A), l ∈ {1, . . . , n} or just µ(A) to denote the
eigenvalues of A, and order them decreasingly |µ1(A)| ≥
· · · ≥ |µn(A)|. Finally, AT is the transpose of A, Aij is the
element of the ith row and jth column of A and ai is the ith
element of the column vector a, i.e. a = [ai]

T .
It is more convenient for the analysis to use a vector form

representation of (8) given by

zk+1 = Azk (10)

where zk := [x(tk)T s(tk)T y(tk)T ]T ∈ R3n,

A :=

[
In τR 0n×n
−κ1L In −κ2In
p(−L) 0n×n (1− p)In

]
∈ R3n×3n,

R ∈ Rn×n is the diagonal matrix with elements ri and L ∈
Rn×n is the Laplacian matrix associated with G(V,E),

Lii = αii :=
∑

j∈Ni

αij and Lij =

{−αij if ij ∈ E,
0 otherwise.

The convergence analysis of this section is done in two
stages. First, we provide necessary and sufficient conditions
for synchronization in terms of the eigenvalues of A (Section
IV-A) and then use Hermite-Biehler Theorem [23] to relate
these eigenvalues with the parameter values that can be
directly used in practice (Section IV-B). All the proof details
are included in the appendix for interested readers.

A. Asymptotic Behavior
We start by studying the asymptotic behavior of (10). That

is, we are interested in finding under what conditions the series
of elements {xi(tk)} converge to (9) as tk goes to infinity.

Consider the Jordan normal form [24] of

A := [ζ1 ... ζ3n] J [η1 ... η3n]
T (11)

where J = blockdiag(Jl)l∈I(A), ζi and ηi are the right and
left generalized eigenvectors of A such that

ζTi ηj =

{
1 if j = i,
0 otherwise.

The crux of the analysis comes from understanding the rela-
tionship between the multiplicity of the eigenvalue µ(A) = 1
and the eigenvalue µ(L) = 0, and their corresponding eigen-
vectors. This is captured in the next two lemmas.

Lemma 1 (Eigenvalues of A and Multiplicity of µ(A) = 1):
A has an eigenvalue µ(A) = 1 with multiplicity 2 if and only
if the graph G(V,E) is connected, κ1 6= κ2 and p > 0.

Furthermore, µl(A) are the roots of

gl(λ) := (λ− 1)2(λ− 1 + p) + [(λ− 1)κ1 +κ2−κ1]νl (12)
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where νl = µl(τLR) and satisfies

νn = 0 < |νl| for l ∈ {1, . . . , n− 1}. (13)

Lemma 2 (Jordan Chains of µ(A) = 1 and µ(A) = 1− p):
Under the conditions of Lemma 1 the right and left Jordan
chains, (ζ1, ζ2) and (η2, η1) respectively, associated with
µ(A) = 1 and the eigenvectors ζ3 and η3 associated with
µ(A) = 1− p are given by

[ζ1 ζ2 ζ3] =




1n 1n − τκ2

p2 1n

0n
(R−11n)

τ
κ2

p R
−11n

0n 0n R−11n


 and (14)

[η1 η2 η3] = γ




R−1ξ 0n 0n
−τξ ξ 0n

τκ2( 1
p + 1

p2 )ξ −κ2

p ξ ξ


 (15)

where ξ is the unique normalized left eigenvector of µ(L) = 0
(
∑n
i=1 ξi = 1) and γ is the ξi-weighted harmonic mean of ri,

i.e. 1
γ = 1TnR

−1ξ =
∑n
i=1

ξi
ri
.

The proof of Lemmas 1 and 2 can be found in Appendices
A-A and A-B. We now proceed to state our main convergence
result.

Theorem 1 (Convergence): The algorithm (10) achieves
synchronization for any initial conditions if and only if the
graph G(V,E) is connected, κ1 6= κ2, p > 0 and |µl(A)| < 1
whenever µl(A) 6= 1. Moreover, whenever the system syn-
chronizes, we have

x∗ = γ

n∑

i=1

ξi

(
1

ri
xi(t0) + τ

κ2

p2
yi(t0)

)
, and (16a)

r∗ = γ

n∑

i=1

ξi(si(t0)− κ2

p
yi(t0)). (16b)

The proof of Theorem 1 can be found in Appendix B.
Theorem 1 provides an analytical tool to understand the
influence of the different nodes of the graph in the final offset
x∗ and frequency r∗. For example, suppose that we know that
node 1 has perfect knowledge of its own frequency (r1) and
the UTC time at t = t0 (x1(t0) = t0), and configure the
network such that node 1 is the unique leader like the top
node in Figures 6a and 6c. It is easy to show that ξ1 = 1 and
ξi = 0 ∀i 6= 1. Then, using (16a)-(16b) and definition of γ
we can see that γ = r1 and

x∗ = x1(t0) + r1τ
κ2

p2
y1(t0) and r∗ = r1s1(t0)− r1κ2

p
y1(t0).

However, since node 1 knows r1 and t0, it can choose
x1(t0) = t0, s1(t0) = 1

r1
and y1(t0) = 0. Thus, we obtain

x∗ = t0 and r∗ = 1 which implies by (9) that every node in the
network will end up with xi(t) = t. In other words, Theorem
1 allows us to understand how the information propagates and
how we can guarantee that every server will converge to the
desired time. Notice that the initial condition used for server
1 is equivalent to assuming that server 1 is a reliable source
of UTC like an atomic clock for instance.

(a)	
   (b)	
   (c)	
  

Fig. 6: Graphs with real eigenvalue Laplacians

B. Necessary and sufficient conditions for synchronization
We now provide necessary and sufficient conditions in terms

of explicit parameter values (κ1, κ2 ,τ and p) for Theorem 1
to hold. We will restrict our attention to graphs that have
Laplacian matrices with real eigenvalues. This includes for
example trees (Figure 6a), symmetric graphs with αij = αji
(Figure 6b) and symmetric graphs with a leader (Figure 6c).

The proof consists on studying the Schur stability of gl(λ)
and has several steps. We first perform a change of vari-
able that maps the unit circle onto the left half-plane. This
transforms the problem of studying the Schur stability into
a Hurwitz stability problem which is solved using Hermite-
Biehler Theorem which says, Given the polynomial P (s) =
ans

n+...+a0, let P r(ω) and P i(ω) be the real and imaginary
part of P (jω), i.e. P (jω) = P r(ω) + jP i(ω). Then P (s) is
a Hurwitz polynomial if and only if

1) anan−1 > 0 and 2)
2) The zeros of P r(ω) and P i(ω) are all simple and real

and interlace as ω runs from −∞ to +∞.
We now determine the proper parameter values that guar-

antee synchronization.
Theorem 2 (Parameter Values for Synchronization): Given

a connected graph G(V,E) such that the corresponding
Laplacian matrix L has real eigenvalues. The system (10)
achieves synchronization if and only if

(i) |1− p| < 1 or equivalently 2 > p > 0

(ii) 2κ1

3p > κ1 − κ2 > 0 and (iii) τ < p(κ2−p(κ1−κ2))
µmax(κ1−p(κ1−κ2))2

where µmax is the largest eigenvalue of LR.
The proof of Theorem 2 can be found in Appendix C.

Note that although µmax depends on ri which is in general
unknown, it is easy to show that µl(LR) ≤ r̂maxµl(L) where
r̂max is an upper bound of the maximum rate deviation ri.
Furthermore, using Greshgorin’s circle theorem, it is easy to
show that µmax(L) ≤ 2αmax := 2 maxi αii. Therefore, if we
set

τ <
p(κ2 − δκp)

2αmaxr̂max(κ1 − δκp)2
(17)

convergence is guaranteed for every connected graph with
real eigenvalues.

V. PERFORMANCE OPTIMIZATION

We now focus on studying the performance of our algorithm
in the presence of noise. We will consider two possible sources
of noise corresponding to measurement errors, due to network
congestion, and frequency drifts (wander) due to temperature
variations, vibrations and interference.

Since our algorithm do not perform skew estimation the
network errors only affect the offset measurements Dx

ij(tk)
in (8). We use gwijwij(tk) to denote the error incurred in
estimating the offset between nodes i and j at time tk.
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This can be produce for instance by a congested connection
between the two different nodes. We assume that wij(tk)
has stationary mean E [wij(tk)] = w̄ij ∀tk and unit variance
E[(wij(tk) − w̄ij)2] = 1 and use gwij to weight the different
connections.

On the other hand, we model the wander using a time
varying rate ri(tk) := ri + ∆ri(tk) where the drift from de
mean ∆ri(tk) evolves according to the auto regressive process

∆ri(tk+1) = qi∆ri(tk) + gdi di(tk) (18)

where qi is the autoregression coefficient (0 < qi < 1) and
di(tk) is a random variable with zero mean E[di(tk)] = 0 and
unit variance E[di(tk)2] = 1. Similar models of wander has
been used for instance in [12] where di(tk) ∼ N (0, 1).

Equation (18) makes the evolution of xi(tk) in (10) non-
linear as now xi(tk+1) = xi(tk) + τri(tk)si(tk). This is
overcome by the fact that ∆ri(tk) and ∆si(tk) := si(tk)−s∗i
are of the order of a few parts per millions and therefore
ri(tk+1)si(tk+1) is approximated by

ri(tk+1)si(tk+1) ≈ ris∗i + ∆ri(tk+1)s∗i + ri∆si(tk+1)

= s∗i (qi∆ri(tk)) + ri(∆si(tk) + usi (tk) + βig
d
i di(tk))

(19)

where βi =
s∗i
ri
≈ 1. Equation (19) also shows that we can

equivalent assume that di(tk) is a noise source that affects
si(tk+1) instead of ri(tk+1).

This motivates the study of the stochastic process

zk+1 = Azk +Bek (20a)
vk+1 = Czk (20b)

where ek = [wTk d
T
k ]T , B = [Bw Bd] with

Bw =




0n×m
−κ1B

−
Gdiag[αijg

w
ij ]

−pB−Gdiag[αijg
w
ij ]


 , Bd =




0n×n
diag[βig

d
i ]

0n×n


 ,

B−G = min{BG,0n×m} and BG being the incidence matrix
of G(V,E) 3 and wk = [wij(tk)]T . The matrix C maps the
system state zk to the performance metric vk and will be
specified in Section V.

In the remaining of this section, we first study the effect of
biased network noise (w̄ij 6= 0) in the asymptotic frequency
of the system and time offsets. In particular, we show that for
arbitrarily distributed noise with stationary mean, the system’s
frequency tends to constantly drift unless there is a well
defined leader in the topology. We then proceed to study
how the parameters and network topology affect the systems
performance, which is represented by the output signal vk of
the stochastic process.

We will assume that the input is white noise, i.e. E[eke
T
l ] =

Im+nδ(l − k),4 and focus on reducing the output power
||vk||22 = limN→+∞

1
N

∑N−1
k=0 vTk vk. This is known as H2

optimal control.

A. Frequency Drift and Time Offset
We now concentrate on studying the evolution of the first

moment of the stochastic process (20). That is, we want to
understand how z̄k = E[zk] evolves as k → +∞. To simplify

3Notice that using this definition L = B−
Gdiag[αij ]B

T
G

4δ(k) = 1 if k = 0 and 0 o.w.

the analysis consider the change of variable ẑ = P−1z̄ =
[η1 ... η3n]

T
z̄ where P is defined as in (11). This change

of variable further simplifies the dynamics of (20) giving

ẑk+1 = Jẑk + P−1Bww̄. (21)

Notice that we assume we assume d̄ = 0n and thus the term
Bdd̄ is omitted from (21).

While it is difficult to provide a physical interpretation
to most of the variables of the vector ẑ, it is possible to
relate certain groups of states with different roles within the
system. Consider the following partition of the state space
ẑ = [(ẑ[1,3])T |(ẑ[4,3n])T ]T . By definition of ẑ and (40) we
have

ẑ
[1,3]
k+1 = Ĵ1ẑ

[1,3]
k + [η1 η2 η3]

T
Bww̄ (22)

ẑ
[4,3n]
k+1 = Ĵ2ẑ

[4,3n]
k + [η4 . . . η3n]

T
Bww̄ (23)

where

Ĵ1 =

[
1 1 0
0 1 0
0 0 1− p

]
and ρ(Ĵ2) < 1.

The function ρ(A) is the spectral radius of A or equivalently
the largest absolute value of its eigenvalues.

The following lemma is crucial in understanding the role
of the different states of ẑ. Let

δx̄k := x(tk)− 1n

(
ẑ1(tk) + ẑ2(tk)− τκ2

p2
ẑ3(tk)

)
(24)

δs̄k := s(tk)−R−11n

(
1

τ
ẑ2(tk) +

κ2

p
ẑ3(tk)

)
(25)

δȳk := y(tk)−R−11ẑ3(tk). (26)

Lemma 3 (Mean Convergence): Under the conditions of
Theorem 1 the system (20) converges in mean towards

δx̄k → δx̄∗, δs̄k → δs̄∗ and δȳk → δȳ∗, with (27)

δz̄∗ =
[
δx̄∗T δs̄∗T δȳ∗T

]T
= [ζ4 ... ζ3n] ẑ[4,3n]∗ and (28)

ẑ[4,3n]∗ = (I − Ĵ2)−1 [η4 . . . η3n]
T
Bww̄. (29)

The proof of Lemma 3 can be found in Appendix A-C.
This result shows that while ẑ[1,3] have an homogeneous and
(possibly) nonconstant effect on every node, ẑ[4,3n] in the limit
introduces a fixed offset. In particular, when w̄ = 0 (e.g. zero
mean noise) δz̄∗ = 0, ẑ2(tk) = (ẑ2)0, ẑ1(tk) = (ẑ1)0+k(ẑ2)0

and ẑ3(tk)→ 0 achieving time consensus as in Theorem 1.
The next two theorems summarize the main results of this

section.
Theorem 3 (Frequency Drift): In the presence of noise and

under the condition of Theorem 1 the system synchronizes in
mean with constant frequency if and only if

n∑

i=1

ξi
∑

j∈Ni

αijg
w
ijw̄ij = 0. (30)

Moreover, when this happens the mean frequency r∗ is given
by (16b).

The proof of Theorem 3 can be found in Appendix D.
Note that (30) implies that ẑ[1,3]

k behaves identically to the
noiseless version. It is important to highlight the relationship
between (30) and the topology of G. In particular, it is possible
to differentiate two different scenarios in which (30) can be
satisfied.
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1) G has a unique leader (say i = 1): In this case we have
N1 = ∅, i.e. α1j = 0 ∀j, ξ1 = 1 and ξj = 0 ∀j 6= 1.
That is −ξTB−Gdiag[αijg

w
ij ]w̄ = ξ10 = 0

2) G does not have a well defined root: Thus, there are
at least two nodes with ξi 6= 0 and w̄ is such that
ξTB−Gdiag[αijg

w
ij ]w̄ = 0.

Thus, while condition 1) can be satisfied by a proper config-
uration of the network, condition 2) is only satisfied by a set
of values of w̄ with zero measure. Therefore, in practice the
only possible way to avoid frequency drift is by using a graph
G with a well defined leader.

Furthermore, while at first sight it seems difficult to evaluate
δz̄∗ using (29), the following Theorem provides us with a
physical interpretation.

Theorem 4 (Time Offsets): Under the conditions of Theo-
rem 1 and (30), δz̄∗ in (28) becomes

δz̄∗ =



−N1L

†B−Gdiag[αij ]w̄
0n
0n




where L† is the pseudo inverse of L and N1 = (In −
γ1ξTR−1).

The proof can be found in Appendix E.

B. H2 Performance Optimization
We now proceed to study the effect of noisy measurements

and wander on the output standard deviation of the system
(||vk||2) when the input ek is white noise (E[eke

T
l ] =

Im+nδ(l − k)). In other words, we seek to minimize

f(κ1, κ2, p, αij) = ||vk||2 =

√√√√E

[
lim

N→+∞

1

N

N−1∑

k=0

vTk vk

]

Since in practice we want to avoid any frequency drift
introduced by the noise we will assume in this section that (30)
holds. Thus, all the randomness of the system is concentrated
in δxk = N1x(tk), δsk = N2s(tk) and δyk = N2y(tk) and
we limit to study the stochastic process

δzk+1 = NAδz +NBek
vk+1 = Cδzk

where N = blockdiag(N1, N2, N2).
This optimization problem is standard in the control theory

community and it can be show to be equivalent to

min
X,κ1,κ2,p,αij

f(κ1, κ2, p, αij) :=
√

trace[XBNNTBT ]

(31a)
subject to ρ(NA) ≤ ρ∗ (31b)
X = ATNTXNA+ CTC (31c)

where A is a function of (κ1, κ2, p, αij) and ρ∗ < 1. The
constrain (31b) has been added in order to maintain the
stability of A.

While it is not in general easy to find the global minimum
of (31) there has been intensive research in studying the
continuous time [25] and discrete time [26] versions of the
optimization problem

min
K,X

f(K) :=
√

trace[XB̄B̄T ] (32a)

subject to ρ(Ā) ≤ ρ∗ (32b)
X = ĀTXĀ+ C̄T C̄ (32c)

where Ā := Â+ B̂2KĈ2, B̄ := B̂1 + B̂2KD̂21 and C̄ := Ĉ1

and δzk is interpreted as evolving according to the closed loop
standard form system

δzk+1 = (Â+ B̂2KĈ2)δzk + (B̂1 + B̂2KD̂21)ek

vk = Ĉ1δzk,

with K being the static output feedback matrix.
A few words about actually solving these optimization

problems follow here. The optimization problem (31) can be
written as (32) with

Â = N, Ĉ1 = C, Ĉ2 =

[
BTG 0m×n 0m×n
0n×n In 0n×n
0n×n 0n×n In

]
,

B̂2 =



N1R 0n×m 0n×n 0n×m 0n×n
0n×n B−G N2 0n×m 0n×n
0n×n 0n×m 0n×n B−G N2


 ,

B̂1 =




0n×m 0n×n
0n×m diag[gdi ]
0n×m 0n×n


 , D̂21 =

[
diag[gwij ] 0m×n
0n×m 0n×n
0n×m 0n×n

]
,

and K =




0n×m τIn 0n×n
−κ1diag[αij ] 0m×n 0m×n

0n×m 0n×n −κ2In
−pdiag[αij ] 0m×n 0m×n

0n×m 0n×n −pIn




This is the case because by definition of B̂2, K and Ĉ2

B̂2KC2 =




0n×m τN1R 0n×n
−κ1B

−
Gdiag[αij ]B

T
G 0n×n −κ2N2

−pB−Gdiag[αij ]B
T
G 0n×n −pN2


 .

Thus, it is straight forward to see (Â + B̂2KĈ2) = NA.
Analogously we get B̂1 + B̂2KD̂21 = NB and Ĉ1 = C.

The main difficulty in solving (31) in stead of (32) is that, as
we showed earlier, our controller K is a nonlinear function of
the parameters K(κ1, κ2, p, α) and cannot be readily obtained
using (32). Furthermore, the main source of nonlinearity
comes from the products κ1diag[αij ] and pdiag[αij ]. This
structure is not currently supported by traditional software
distributions, which usually only support sparsity patterns, and
therefore needs to be implemented.

One particular package that proved to be easily adapted was
Hifoo [25], [27] and more precisely in its discrete-time version
Hifood [28]. These algorithms only use gradient information
in their implementation of BGS and gradient bundle stages.
Thus, to implement discrete time H2 optimization a new
Matlab subroutine that evaluated the H2 norm f as well as
its gradient was created.

The evaluation of the gradient is performed in three stages
using the chain rule. We first compute the gradients of f with
respect to Ā := Â + B̂2KĈ2, B̄ := B̂1 + B̂2KD̂21 and
C̄ := Ĉ1 which are given by

∇Āf =
1

f
XĀY, ∇B̄f =

1

f
XB̄ and ∇C̄f =

1

f
C̄Y.

Once ∇Āf , ∇B̄f and ∇C̄f are computed we can use the
subroutines of hifood to compute ∂Ā

∂K , ∂B̄
∂K and ∂C̄

∂K . Finally,
we obtain

∇κ1
f =

trace

[(
∇ĀfT

∂Ā

∂K
+∇B̄fT

∂B̄

∂K
+∇C̄fT

∂C̄

∂K

)
∂K

∂κ1

]
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Fig. 7: Testbed of IBM BladeCenter blade servers

and similarly for other parameters.

VI. EXPERIMENTS

To test our solution and analysis, we implement an asyn-
chronous version of Algorithm 1 (Alg1) in C using the IBM
CCT solution as our code base. Every node perform its own
measurements and updates every τ seconds using (8), but not
necessarily at the same instants tk.

Our program reads the TSC counter directly using the
rdtsc assembly instruction to minimize reading latencies
and maintains a virtual clock that can be directly updated.
The list of neighbors is read from a configuration file and
whenever there is no neighbor, the program follows the local
Linux clock. Finally, offset measurements are taken using an
improved ping pong mechanism proposed in [10].

We run our skewless protocol in a cluster of IBM Blade-
Center LS21 servers with two AMD Opteron processors of
2.40GHz, and 16GB of memory. As shown in Figure 7,
the servers serv1-serv10 are used to run the protocol. The
offset measurements are taken through a Gigabit Ethernet
switch. Server serv0 is used as a reference node and gathers
time information from the different nodes using a Cisco 4x
InfiniBand Switch that supports up to 10Gbps between any
two ports and up to 240Gbps of aggregate bandwidth. This
minimizes the error induced by the data collecting process.

We use this testbed to validate the analysis in Section
IV. First, we illustrate the effect of different parameters and
analyze the effect of the network configuration on convergence
(Experiment 1). Then we present a series of configurations
that demonstrate how connectivity between clients is useful
in reducing the jitter of a noisy clock source (Experiment
2). And finally, we compare the performance of our protocol
with respect to NTP version 4 (Experiment 3) and IBM CCT
(Experiment 4).

We will use several performance metrics to evaluate Alg1.
The output performance signal vk will be the vector of offset
difference between the leader 1 and every other node i, i.e.
vi(tk) = xi(tk) − x1(tk) with i ∈ {2, ..., n}, and used
a normalized version of its referred here as mean relative
deviation ,

√
Sn, as performance metric. In other words,

Sn =
||vk||22
n− 1

=
1

n− 1

n∑

i=2

〈
(xi − x1)2

〉
. (33)

where < · > amounts to the sample average. We will also use
the 99% Confidence Interval CI99 and the maximum offset
(CI100) as metrics of accuracy. For example, if CI99 = 10µs,
then the 99% of the offset samples will be within 10µs of the
leader.

Unless explicitly stated, the default parameter values are

p = 0.99, κ1 = 1.1, κ2 = 1.0 and αij =
c

|Ni|
. (34)

The scalar c is a commit or gain factor that will allow us to
compensate the effect of τ . Notice that by definition of αij ,
αii = c for every node that is not the leader.

Moreover, these values immediately satisfy (i) and (ii) of
Theorem 2 since 1−p = 0.01 and 2κ1

3p = 0.7407 > κ1−κ2 =
0.1. The remaining condition can be satisfied by modifying τ
or equivalently c. Here, we choose to fix c = 0.7 which makes
condition (iii)

τ <
890.1

µmax
ms.

For fixed polling interval τ , the stability of the system depends
on the value of µmax, which is determined by the underlying
network topology and the values of αij .

!"#$%& !"#$'& !"#$%&

!"#$(&

!"#$'&
)*+& ),+&

Fig. 8: Effect of topology on convergence: (a) Client-server
configuration; (b) Two clients connected to server and mutu-
ally connected.

Experiment 1 (Convergence): We first consider the client
server configuration described in Figure 8a with a time step
τ = 1s. In this configuration µmax ≈ c = 0.7 and therefore
condition (iii) becomes τ < 1.2717s. Figure 9a shows the
offset between serv1 (the leader) and serv2 (the client) in
microseconds. There we can see how serv2 gradually updates
s2(tk) until the offset becomes insignificant.
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(a) Client server configuration with
τ = 1s. The client converges and the
algorithm is stable.
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(b) Two clients mutually connected
with τ = 1s. The algorithm becomes
unstable.

Fig. 9: Loss of stability by change in the network topology

Figure 9a tends to suggest that the set of parameters given
by (34) and τ = 1s are suitable for deployment on the servers.
This is in fact true provided that network is a directed tree as
in Figure 6a. The intuition behind this fact is that in a tree,
each client connects only to one server. Thus, those connected
to the leader will synchronize first and then subsequent layers
will follow.

However, once loops appear in the network, there is no
longer a clear dependency since two given nodes can mutually
get information from each other. This type of dependency
might make the algorithm unstable. Figure 9b shows an
experiment with the same configuration as Figure 9a in which
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serv2 synchronizes with serv1 until a third server (serv3)
appears after 60s. At that moment the system is reconfigured
to have the topology of Figure 8b introducing a timing loop
between serv2 and serv3. This timing loop makes the system
unstable.

The instability arises since after serv3 starts, the new
topology has µmax ≈ 1.5c = 1.05. Thus, the time step
condition (iii) becomes τ < 847.8ms which is no longer
satisfied by τ = 1s.

This may be solved for the new topology (Figure 8b) by
using any τ smaller than 847.8ms. However, if we want a set
of parameters that is independent of the topology, we can use
(17) and notice that αmax = c and r̂max ≈ 1. We choose

τ = 500ms <
890.2

2αmax
ms =

890.2

2c
ms = 635.9ms.

Figure 10 shows how now serv2 and serv3 can synchronize
with serv1 after introducing this change.
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Fig. 10: Two clients mutually connected with τ = 500ms

Experiment 2 (Timing Loops Effect): We now show how
timing loops can be used to collectively outperform individual
clients when the time source is noisy.

We run Alg1 on 10 servers (serv1 through serv10). The
connection setup is described in Figure 11. Every node is
directly connected unidirectionally to the leader (serv1) and
bidirectionally to 2K additional neighbors.

K=0	
   K=2	
  

Fig. 11: Leader topologies with 2K neighbors connection.
Connections to the leader (serv1) are unidirectional while
the connections among clients (serv2 through serv10) are
bidirectional

When K = 0 then the network reduces to a star topology
and when K = 4 the servers serv2 through serv10 form a
complete graph.

The dashed arrows in Figure 11 show the connections
where jitter was introduced. To emulate a link with jitter
we added random noise η with values taken uniformly from
{0, 1, ..., Jittermax} on both direction of the communication,

η ∈ {0, 1, ..., Jittermax}ms. (35)

Notice that the arrow only shows a dependency relationship,
the ping pong mechanism sends packets in both direction of

the physical communication. We used a value of Jittermax =
10ms. Since the error was introduced in both directions of
the ping pong, this is equivalent to a standard deviation of
6.05ms.
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(a) Star topology (K = 0)
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(b) Complete subgraph (K = 4)

Fig. 12: Offset of the nine servers connected to a noisy clock
source

Figure 12 illustrates the relative offset between the two
extreme cases; The star topology (K = 0) is shown in Figure
12a, and the complete subgraph (K = 4) is shown in Figure
12b.

The worst case offset for K = 0 is CI100 = 5.1ms
which is on the order of the standard deviation of the jitter.
However, when K = 4 we obtain a worst case offset of
CI100 = 690.8µs, an order of magnitude improvement.
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Fig. 13: Effect of the client’s communication topology on
the mean relative deviation. As the connectivity increases (K
increases) the mean relative deviation is reduced by factor of
6.26, i.e. a noise reduction of approx. 8dB.

The change on the mean relative deviation
√
Sn as the

connectivity among clients increases from isolated nodes
(K = 0) to a complete subgraph (K = 4) is studied in Figure
13. The results presented show that even without any offset
filtering mechanism the network itself is able to perform a
distributed filtering that achieves an improvement of up to a
factor of 6.26 or equivalently a noise reduction of almost 8dB.
Experiment 3 (Comparison with NTPv4): We now perform
a thorough comparison between our protocol (Alg1) and
NTPv4. We will use the one hop configuration of Figure 8b
but without the bidirectional link. Here, server serv1 is set as
NTP server and as leader of Alg1, server serv2 has a client
running NTPv4 and server serv3 a client running our protocol.

In order to make a fair comparison, we need both algorithms
to use the same polling interval. Thus, we fix τ = 16sec. This
can be done for NTP by setting the parameters minpoll
and maxpoll to 4 (24 = 16secs). The remainder parameter
values for Alg1 are given by

p = 1.98, κ1 = 1.388 and κ2 = 1.374. (36)

Figure 14a shows the time differences between the clients
running NTPv4 and Alg1 (serv2 and serv3) , and the leader
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(serv1) over a period of 30 hours. It can be seen that Alg1
is able to track serv1’s clock keeping an offset smaller than
10µs for most of the time while NTPv4 incurs in larger offsets
during the same period of time. This difference is produced
by the fact that Alg1 is able to react more rapidly to frequency
changes while NTPv4 incurs in more offset corrections that
generate larger jitter.
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(a) Offset values of NTPv4 and Alg1
for a period of 30 hours.
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(b) Cumulative Distribution Function

Fig. 14: Performance evaluation between our solution (Alg1)
and NTPv4

A more detailed and comprehensive analysis is presented
in Figure 14b where we plot the Cumulative Distribution
Function (CDF) of the offset samples. That is, the fraction
of samples whose time offset is smaller than a specific
value. Using Figure 14b we compute the corresponding 99%
confidence intervals (CI99)

Alg1 achieves a performance of
√
Sn = 3.1µs, CI99 =

9.5µs and a maximum offset of CI100 = 15.9µs, while NTPv4
obtains

√
Sn = 8.1µs, CI99 = 21.8µs and a maximum offset

of CI100 = 28.0µs. Thus, not only Alg1 achieves a reduction
of
√
Sn by a factor of 2.6 (−4.2dB) with respect to NTPv4,

but it also obtains smaller confidence intervals and maximum
offset values.
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Fig. 15: Offset values of NTPv4 and Alg1 after a 25ms offset
introduced in serv1.

Finally, we investigate the speed of convergence. Starting
from both clients synchronized to server serv1, we introduce
a 25ms offset. Figure 15 shows how Alg1 is able to converge
to a 20µs range within one hour while NTPv4 needs 4.5hours
to achieve the same synchronization precision.

Experiment 4 (Comparison with IBM CCT): We now
proceed to compare the performance of Alg1 with respect to
IBM CCT. Notice that unlike IBM CCT, our solution does
not perform any previous filtering of the offset samples, the
filtering is performed instead by calibrating the parameters
which mostly depend on the polling interval τ chosen. Here
we use c = 0.70, τ = 250ms, κ1 = 0.1385, κ2 = 0.1363 and
p = 0.62.

In Figure 16a we present the mean relative deviation
√
Sn

for two clients connected directly to the leader as the jitter

is increased from Jittermax = 0µs (no jitter) to Jittermax =
160µs with a granularity of 1µs. The worst case offset is
shown in Figure 16b. Each data point is computed using a
sample run of 250 seconds.

Our algorithm consistently outperforms IBM CCT in terms
of both

√
Sn and worst case offset. The performance im-

provement is due to two reasons. Firstly, the noise filter used
by the IBM CCT algorithm is tailored for noise distributions
that are mostly concentrated close to zero with sporadic large
errors. However, it does not work properly in cases where the
distribution is more homogeneous as in this case. Secondly,
by choosing δκ = κ1−κ2 = 0.002� 1 the protocol becomes
very robust to offset errors.
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Fig. 16: Performance evaluation between our solution (Alg1)
and IBM CCT

Experiment 5 (Frequency drift without leader): We now
proceed to experimentally verify that without leader, the
system tends to constantly drift the frequency. Our analysis
predicts that even the minor bias in the offset measurements
will produce this effect. To verify this phenomenon, we use
the network topology in Figure 8b with τ = 0.5s and wait for
the system to converge.
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Fig. 17: Frequency drift

After 1000s the timing process of serv1 is turned off.
Figure 17 shows how the offsets of serv2 and serv3 start
to grow in a parabolic trajectory characteristic of a constant
acceleration, i.e. constant drift. After 6600s serv1 is restarted
and the system quickly recovers synchronization. A second
order fit of the faulty trajectory was perform obtaining a
drift of approximately −250 ns/s2. While this is not quite
significant if the first few minutes, it becomes significant as
time goes on.

Experiment 6 (Jitter and Wander Tradeoff): Finally, we
use the proposed H2 optimization scheme to show how
the optimal parameter values depend on the different noise
condition within the network described in Figure 18. We
consider three different noise scenarios in which we either
add jitter between server serv1 and servers serv2 and serv3,
and/or add wander on severs serv2-serv7. In all the cases we
used τ = 0.5s and make offset measurements through the
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InfiniBand switch to minimize the any additional source of
noise.
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Fig. 18: Network scenarios and optimal parameters

The jitter is generated by adding in both directions of
the physical communication a random value η similarly to
Experiment 2 (c.f. (35)), but with a Jittermax = 100µs. This
generates an aggregate offset measurement noise of zero mean
and standard deviation of 40.8µs. On the other hand, the
wander is generated by adding gaussian noise with zero mean
and standard deviation of 0.2ppm in the si(tk) adaptations.
As discussed in Section V, this noise can be used to emulate
the wander of a bad quality clock.

We used different values of gwij and gdi to differentiate the
noise conditions in the optimization scheme. The large jitter
scenario is represented in by gdi = 1e − 3 ∀i, gw21 = gw31 =
100 and gwij = 1 otherwise. The large wander scenario is
represented by gdi = 1e− 1 ∀i and gwij = 1. Finally, the large
jitter and wander scenario is represented using gdi = 1e−1 ∀i,
gw21 = gw31 = 100 and gwij = 1 otherwise. The output parameter
values for all three cases are present also in Figure 18.
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Fig. 19: H2 Performance optimization: offset variance vs
server number

Figure 19 shows the standard deviation of the offset be-
tween servers serv2-serv7 and serv1 in the three experimental
scenarios and for the three different set of parameters shown
in Figure 18. It can be seen that although the configuration
tuned for jitter performs very well in cases with large jitter,
it performs quite poorly in scenarios with large wander.
Similarly, the configuration tuned for wander does not perform
well in high jitter scenarios.

However, the configuration tuned for jitter and wander is
able to provide acceptable performance in all three exper-
imental scenarios. Thus, we experimentally demonstrate a
fundamental tradeoff between offset and wander.

VII. CONCLUSION

This paper presents a clock synchronization protocol that
is able to synchronize networked nodes without explicit esti-

mation of the clock skews and steep corrections on the time.
Our solution is guaranteed to converge even in the presence of
timing loops which allow different clients to share timing in-
formation and even collectively outperform individual clients
when the time source has large jitter. The system is robust
to noisy measurements provided that the topology has a well
defined leader and we can optimize the parameter values to
minimize noise variance. We implemented our solution on a
cluster of IBM BladeCenter servers and empirically verified
our predictions and our protocol’s supremacy over several
existing solutions.
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APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 1
Proof: We first compute the characteristic polynomial

det(λI3n −A) =

∣∣∣∣∣
(λ− 1)In −τR 0n×n
κ1L (λ− 1)In κ2In
pL 0 (λ− 1 + p)In

∣∣∣∣∣

= (λ− 1)n
∣∣∣∣

(λ− 1)In + τκ1

λ−1LR κ2In
τp
λ−1LR (λ− 1 + p)In

∣∣∣∣
= det

(
(λ− 1)2(λ− 1 + p)In + [(λ− 1)κ1

+(κ2 − κ1)]τLR) =

n∏

l=1

gl(λ),

where gl(λ) is as defined in (12) and we have iteratively
use the determinant property of block matrices det(A) =

det(A11) det(A\A11) where A =

[
A11 A12

A21 A22

]
and

A\A11 = A22 − A21A
−1
11 A12 is the Schur complement of

A11 [24].
Thus, λ = 1 is a double root of the characteristic polyno-

mial if and only if κ1 6= κ2, p > 0 and τLR has a simple zero
eigenvalue, i.e. (13). Now, since R is nonsingular (13) must
hold for the eigenvalues of L as well, which is in fact true if
and only if the directed graph G(V,E) is connected [19].

B. Proof of Lemma 2
Proof: We start by computing the right Jordan chain. By

definition of ζ1, (A− I)ζ1 = 0n. Thus, if ζ1 = [xT sT yT ]T ,
then the following system of equations must be satisfied

τRs = 0n (a), − κ1Lx− κ2y = 0n (b) and
−pLx− py = 0n (c). (37)

Equation (37a) implies s = 0. Now, since p > 0, (37c)
implies Lx = −y, which when substituted in (37b) gives

(κ2 − κ1)y = 0n. Thus, since κ1 6= κ2, y = 0n and
x ∈ ker(L). By choosing x = α11n (for some α1 6= 0)
we obtain ζ1 = α1

[
1Tn 0Tn 0Tn

]T
.

Notice that the computation also shows that ζ1 is the unique
eigenvector of µ(A) = 1 which implies that there is only one
Jordan block of size 2. The second member of the chain, ζ2,
and ζ3 can be computed similarly by solving (A−In)ζ2 = ζ1
and (A− (1− p)In)ζ3 = 0n. This gives

ζ2 =

[
α21n

α1

τ R
−11n
0n

]
and ζ3 = α3



− τκ2

p2 1n
κ2

p R
−11n

R−11n


 .

In computing ζ3, we obtain Lx = 0 and Rx = − τps = −κ2τ
p2 y.

ζ3 follows by taking y = α3R
−11n.

The vectors η1, η2 and η3 can be solved in the same way us-
ing ηT2 (A−I) = 0Tn , ηT1 (A−I) = ηT2 and ηT3 (A−(1−p)I) =

0Tn . This gives η1 =
[
β2

τ R
−1ξT β1ξ

T (−κ2

p β1 + κ2

p2 β2)ξT
]T

,

η2 = β2

[
0Tn ξ

T κ2

p ξ
T
]T

and η3 = β3

[
0Tn 0Tn ξ

T
]T
.

We set α1 = α2 = α3 = 1; this can be done without loss
of generality provided we still satisfy ηTl ζl = 1 and ηTl ζh = 0
for l 6= h. Finally, ηT1 ζ1 = 1 givesβ2 = γτ , ηT3 ζ3 = 1 gives
β3 = γ and ηT1 ζ2 = 0 gives β1 = −β2 = −γτ .

C. Proof of Lemma 3

Proof: Since Ĵ2 has ρ(Ĵ2) < 1 then z[4,3n](tk) converges
for every initial condition to a unique value which is the fix
point of (23) given by ẑ[4,3n]∗(29) or in terms of the original
system variables by δz̄∗ (28).

Now by definition of ẑ, z̄k = P ẑk =
∑3
l=1 ζlẑl(tk) +

[ζ4 ... ζ3n] ẑ
[4,3n]
k . Then, since ẑ[4,3n]

k → ẑ
[4,3n]∗
k we have

z̄k −
3∑

l=1

ζlẑl(tk)→ [ζ4 ... ζ3n] ẑ[4,3n]∗ = δz̄∗. (38)

Thus, by Lemma 2 we obtain

[
x̄k − δx̄∗
s̄k − δs̄∗
ȳk − δȳ∗

]
−




1n(ẑ1(tk) + ẑ2(tk)− τκ2

p2 ẑ3(tk))

R−11n

(
1
τ ẑ2(tk) + κ2

p ẑ3(tk)
)

R−11nẑ3(tk)


→ 03n

which is equivalent to (27).

APPENDIX B
PROOF OF THEOREM 1

Proof: We first notice that whenever x(tk) approaches
(9) then

lim
h→∞

x(th)− r∗1n(th − t0) = x∗1n (39)

Sufficiency: Since we are under the assumptions of Lemmas
1 and 2 we know that µ(A) = 1 has multiplicity 2 and a Jordan
chain of size 2. Thus, the Jordan normal form of A is

A = [ζ1...ζ3n]




1 1 0
0 1 0
0 0 1− p

03×3(n−1)

03(n−1)×3 Ĵ







η1
T

...
η3n

T




(40)
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where Ĵ has eigenvalues with spectral radius ρ(Ĵ) :=
maxl |µl(Ĵ)| < 1. Thus, it follows that

lim
h→∞

Ah − ζ1ηT1 − (hζ1 + ζ2)ηT2 = lim
h→∞

[ζ1...ζ3n] (41)



02×2 02×1

01×2 (1− p)h 02×(3n−2)

0(3n−2)×2 Ĵh







η1
T

...
η3n

T


 = 03n

where the last equality follows since (1 − p)h −−−−→
h→∞

0 and
∥∥∥Ĵh

∥∥∥
ε
≤
∥∥∥Ĵ
∥∥∥
h

ε
≤ (ρ + ε)h −−−−→

h→∞
0, where the norm ‖·‖ε

is chosen such that ‖A‖ε = ρ(A) + ε [24, p. 297, Lemma
5.6.10] and ε is such ρ(Ĵ) + ε < 1.

Right multiplying (41) with a given initial condition z0 =
[xT0 sT0 yT0 ]T and using (14) and (15) gives

lim
k→∞

xk − (tk − t0)γ1nξ
T (s0 −

κ2

p
y0) =

= γ1nξ
T (R−1x0 + τ

κ2

p2
y0). (42)

Thus, equation (16) follows from identifying (42) and (39).
Necessity: The algorithm achieves synchronization when-

ever (39) holds. Then, it follows from (10) and (39) that
asymptotically the system behaves according to

zk =

[
xk
sk
yk

]
=

[
x∗1n

r∗R−11n
0n

]
+ k

[
τr∗1n
0n
0n

]

= (τr∗ζ2 + (x∗ − τr∗)ζ1) + kr∗τζ2.

Thus, since P is invertible ζl are linearly independent. There-
fore, if the system synchronizes for arbitrary initial condition,
then it must be the case that the effect of the remaining modes
µl(Γ) vanishes, which can only happen if for every µl(Γ) 6= 1,
|µl(Γ)| < 1 and the multiplicity of µl(Γ) = 1 is two. Now
suppose that either κ1 = κ2 or p = 0. Then by Lemma 1, the
multiplicity of µl(Γ) = 1 is not two which is a contradiction.
Thus, we must have κ1 6= κ2 and p > 0 whenever the system
synchronizes for arbitrary initial condition.

APPENDIX C
PROOF OF THEOREM 2

Proof: We will show that when G(V,E) is connected
with µ(L) ∈ R, then (i)-(iii) are equivalent to the conditions
of Theorem 1.

Since, G(V,E) is connected and (i)-(ii) satisfies p > 0 and
κ1 6= κ2, the conditions of Lemma 1 are satisfied. Therefore
the multiplicity of µ(A) = 1 is two and by (13) these are the
roots of gn(λ) = (λ− 1)2(λ− 1 + p), which corresponds to
the case νn = 0.

Thus, to satisfy Theorem 1 we need to show that the
remaining eigenvalues are strictly in the unit circle. This is
true for the remaining root of gn(λ) if and only if (i).

For the remaining gl(λ), this implies that are Schur poly-
nomials. Thus, we will show that gl(λ) is a Schur polynomial
if and only if (i)-(iii) hold. We drop the subindex l for the rest
of the proof.

We first transform the Schur stability problem into a
Hurwitz stability problem. Consider the change of variable
λ = s+1

s−1 . Then |λ| < 1 if and only if R[s] < 0.

Now, since ν > 0 by (13), let

P (s) =
(s− 1)3

δκpν
g

(
s+ 1

s− 1

)
= s3 +

(
2κ1

δκp
− 3

)
s2

+

(
4

δκν
+ 3− 4κ1

δκp

)
s+

4(2− p)
δκpν

+
2κ1

δκp
− 1

where δκ = κ1 − κ2.
We will apply Hermite-Biehler Theorem to P (s), but first

let us express what 1) and 2) of the Theorem mean here.
Condition 1) becomes

2κ1

δκp
− 3 > 0. (43)

Now let P r(ω) and P i(ω) be as in Hermite-Biehler Theo-
rem, i.e. let

P r(ω) =−
(

2κ1

δκp
− 3

)
ω2 +

4(2− p)
δκpν

+
2κ1

δκp
− 1

P i(ω) =− ω3 +

(
4

δκν
+ 3− 4κ1

δκp

)
ω

The roots of P r(ω) and P i(ω) are given by ω0 = ±
√
ωr0

and ω0 ∈ {0, ±
√
ωi0} respectively, where

ωr0 :=

4(2−p)
δκpν + 2κ1

δκp − 1
2κ1

δκp − 3
and ωi0 :=

4

δκν
+ 3− 4κ1

δκp
(44)

Since the roots P r(ω) and P i(ω) must be real, we must
have ωr0 > 0 and ωi0 > 0. Therefore, by monotonicity of the
square root, the interlacing condition 2) is equivalent to

0 < ωr0 < ωi0. (45)

Thus we will show: (i)-(iii) hold ⇐⇒ (43) and (45) hold.
It is straightforward to see that using (i) and (ii) we can get

(43). On the other hand, ωio > 0 from (45) together with (43)
gives 0 < 4

δκν + 3 − 4κ1

δκp <
4
δκν , which implies that δκ > 0,

and therefore (ii) follows.
Now using (43) and the definition of ωr0 in (44), ωr0 > 0

becomes 4(2−p)
δκpν + 2κ1

δκp − 1 > 0 which always holds under (i)
and (ii) since the first term is always positive and 2κ1

δκp − 1 >
2κ1

δκp − 3 > 0 by (43).
Using (44), ωr0 < ωi0 is equivalent to

ν <
p(κ2 − δκp)
(κ1 − δκp)2

. (46)

Finally, νl = µl(τLR) = τµl(LR). Thus, since (46) should
hold ∀l ∈ {1, ..., n− 1}, then

τ < min
l

p(κ2 − δκp)
µl(LR)(κ1 − δκp)2

=
p(κ2 − δκp)

µmax(κ1 − δκp)2

which is exactly (iii).

APPENDIX D
PROOF OF THEOREM 3

Proof: By Lemma 3 we know that s̄i(tk) asymptotically
approaches δs̄∗i + 1

τri
ẑ2(tk) + κ2

pri
ẑ3(tk) ∀i. Therefore, s̄i(tk)

becomes constant if and only if 1
τri
ẑ2(tk) + κ2

p ẑ3(tk) does.



14

Now from (22) it follows that

ẑ2(tk+1) = ẑ2(tk) + ηT2 Bww̄

= ẑ2(tk)− τγ(κ1 − κ2)ξTB−Gdiag[αijg
w
ij ]w̄

ẑ3(tk+1) = (1− p)ẑ3(tk) + ηT3 Bww̄

= (1− p)ẑ3(tk)− pξTB−Gdiag[αijg
w
ij ]w̄.

Thus, z3(tk)→ −ξTB−Gdiag[αijg
w
ij ]w̄ and

ẑ2(tk) = ẑ2(0) + tkγ(κ2 − κ1)ξTB−Gdiag[αijg
w
ij ]w̄

which is constant if and only if (κ2 −
κ1)ξTB−Gdiag[αijg

w
ij ]w̄ = 0. But since, by Theorem 1,

κ1 > κ2 then we must have

0 = −ξTB−Gdiag[αijg
w
ij ]w̄ =

n∑

i=1

ξi
∑

j∈Ni

αijg
w
ijw̄ij .

APPENDIX E
PROOF OF THEOREM 4

Proof: By Lemma 2 and definition of ẑ we can compute

δx̄k = x(tk)− 1n

(
ẑ1(tk) + ẑ2(tk)− τκ2

p2
ẑ3(tk)

)
= x(tk)

−γ1n
(
ξTR−1x(tk)− τξT s(tk) + τκ2

(
1

p
+

1

p2

)
ξT y(tk)

)

−γ1n
(
τξT s(tk)− τκ2

p
ξT y(tk)

)
+ γ1n

τκ2

p2
ξT y(tk)

= x(tk)− γ1nξTR−1x(tk) = N1x(tk).

Similarly, we have δs̄k = N2s(tk) and δȳk = N2y(tk) where
N2 = (In − γR−11ξT ).

Moreover, since N1R = RN2, N1L = LN2 = L and
N2B

−
Gdiag[αijg

w
ij ]w̄ = B−Gdiag[αijg

w
ij ]w̄ (by (30)) we have

δx̄k+1 = δx̄k + τRδs̄k (47a)
δs̄k+1 = −κ1Lδx̄k + δs̄k − κ2δȳk − κ1B

−
Gdiag[αijg

w
ij ]w̄

(47b)
δȳk+1 = −pLδx̄k + (1− p)δȳk − pB−Gdiag[αijg

w
ij ]w̄ (47c)

Now, by Lemma 3 we know that (27) holds and therefore
δz̄∗ is a fixed point of (47). Thus, (47a) implies that δs̄∗ = 0
and (47b)−κ1

p (47c) gives

(κ1 − κ2)δȳ∗ = 0

which implies δȳ∗ = 0 since κ1 > κ2. Finally using (47c)
again we have

Lδx̄∗ +B−Gdiag[αij ]w̄ = 0

L†Lδx̄∗ = −L†B−Gdiag[αij ]w̄

N3δx̄
∗ = −L†B−Gdiag[αij ]w̄

where N3 = L†L = (In − 1
n1n1

T
n ).

Thus, since N1N3 = N1 and by definition N1δx̄ = N2
1 x̄ =

N1x̄ = δx̄ it follows that

N3δx̄
∗ = −L†B−Gdiag[αij ]w̄

N1N3δx̄
∗ = −N1L

†B−Gdiag[αij ]w̄

δx̄∗ = −N1L
†B−Gdiag[αij ]w̄
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