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Decentralized Synchronization of Heterogeneous
Oscillators on Networks with Arbitrary Topology

Enrique Mallada, Randy A. Freeman, and Ao Tang

Abstract—Oscillator synchronization is an instrumental component
of many engineering applications. For example, it can provide
networked devices with a common temporal reference necessary for
coordinating actions or decoding transmitted messages. In this paper,
we study the problem of achieving both phase and frequency synchro-
nization on a network of heterogeneous oscillators using only local
measurements. Most current solutions suffer from phase differences
in steady state due to frequency heterogeneity; others provide a con-
vergence analysis which is valid only locally, only under synchronous
adaptation, or only under a regular graph structure. In contrast, our
solutions can exhibit little or no steady-state phase differences under
arbitrary frequency heterogeneity. Furthermore, we provide a global
convergence analysis valid on arbitrary connected graphs and either
in continuous time or under sufficiently fast asynchronous updates.

Index Terms—Synchronization, coupled oscillators, control of
networks, nonlinear control.

I. Introduction

Achieving temporal coordination among different networked
devices is a fundamental requirement for the successful operation
of many engineering systems. For example, it is necessary in
communication systems for recovering transmitted messages [1],
in sensor networks for coordinating wake up cycles [2] or achieving
temporal measurement coherence [3], and in computer networks
for preserving the causality of distributed events [4]. Almost
ubiquitously, such coordination is accomplished by providing
each node of the network with its own local oscillator and then
compensating its phase and frequency (using information received
from other devices on the network) to achieve a common temporal
reference. Over the last couple of decades, several schemes have
been proposed tailored to different performance requirements. Their
main differences lie in the assumed quality of the oscillators and
the methods implemented to compensate them.

Legacy applications such as public switched telephone networks
and cellular networks use a centralized hierarchical synchronization
scheme with high-precision oscillators having relative frequency
errors ranging from 0.01 to 4.6 parts per million (ppm) [5], [6]. More
recently, applications like wireless sensor networks impose the need
for synchronization schemes which can be implemented using cheap
oscillators having precisions between a few and 100 ppm [7]. Unfor-
tunately, traditional synchronization architectures have become in-
creasingly unsuitable for such applications for several reasons. First,
the synchronization of the entire network can break down when a
few nodes fail. Second, to achieve high precision, expensive oscilla-
tors are usually needed at the top of the hierarchy. Finally, the central-
ized nature of the solution restricts its scalability. Thus there are three
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essential requirements that any synchronization protocol designed
for these newer applications must satisfy: they should be decentral-
ized and independent of the network topology (each node should use
only its neighbors’ oscillator information to adjust it own oscillator),
they should be robust to high variances in the distribution of the
oscillator frequencies among the nodes, and they should minimize
the steady-state phase differences among nodes as much as possible.

A variety of synchronization algorithms have been proposed
along these lines, jointly inspired by collective synchronization in
physics and biology [8]–[10] and cooperative control in engineering
networks [11], [12]. One possible solution is to use interconnected
discrete-time phase-locked loops which update their phases based on
their neighbor’s information to achieve synchronization [13]–[16].
Another is to couple analog oscillators (such as voltage-controlled
oscillators or CMOS oscillators) using phase detectors [17], [18] or
pulse coupling [19]–[21]. While these solutions are decentralized
and rely only on local information, they all exhibit phase differ-
ences in steady state when the frequencies of the oscillators are
heterogeneous. In contrast, the method in [22] directly compensates
for frequency differences, but the associated analysis assumes syn-
chronous discrete-time updates. This assumption is removed in [23],
at the cost of requiring sufficiently small differences in frequency,
and also in [24], but with an analysis only for complete graphs.

In this paper, we present two decentralized controllers for the
phase and constant-frequency synchronization of heterogeneous
oscillators. When implemented in continuous time, these controllers
guarantee zero steady-state phase errors under arbitrary frequency
heterogeneity; in discrete time they produce steady-state phase
errors which can be made small through fast sampling. We provide
a proof of (almost) global convergence on arbitrary connected
graphs, valid either in continuous time or under sufficiently fast
asynchronous discrete-time updates. We also present simulation
results which indicate that our methods are reasonably robust
to slower asynchronous update rates, communication drops and
delays, and other imperfections. Finally, in contrast to many
results which assume a linear clock model, our oscillator model is
nonlinear, with the system state evolving on an n-dimensional torus.
This significantly complicates the convergence analysis, as the
system can now present multiple non-isolated constant-frequency
orbits [25], but provides a more realistic model that is able to predict
all the possible behaviors that these systems may have.

The paper is organized as follows. We introduce the oscillator
model as well as the proposed control laws in Section II.
Our convergence analysis is presented in Section III. Several
implementation details as well as related work is discussed in
Section IV. Numerical examples that validate our analysis are
provided in Section V and we summarize our work in Section VI.
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II. Problem statement and proposed solutions

Let G = (V,E) be a simple, connected, undirected graph with
vertex set V (containing at least two vertices) and edge set E.
We label and order the vertices, writing V = {1, . . . , n}, where
n = |V | > 2. The edges are unordered pairs of distinct vertices,
and we write ij ∈ E when there is an edge between vertices i
and j. We define m = |E| > n− 1, and we order the edges by
writingE = {i1j1, . . . , imjm}.

Let T ⊂ C denote the unit circle in the complex plane. Each
vertex i has a local oscillator with dynamics given by the equation

żi(t) = jωiui(t)zi(t) , (1)

where zi(·) is the oscillator state taking values in T, the positive
constant ωi is the nominal oscillator frequency, ui(·) is a local
control signal for adjusting the frequency, j denotes

√
−1, and t

denotes the global time variable. In terms of the oscillator phase
φi(·) = ∠zi(·) taking values in R, we can write (1) as

φ̇i(t) = ωiui(t) (2)

zi(t) = exp
(
jφi(t)

)
. (3)

A distinguishing feature of this model is that the frequencies ωi are
unknown and possibly arbitrarily different for each vertex. These
equations (1) or (2)–(3) might model an analog voltage-controlled
oscillator with an unknown gain. They might also model a digital
phase accumulator driven by a clock with an unknown frequency,
provided both the phase resolution and the driving frequency are
large enough. In either case, it is important to note that the state zi(·)
of each such controlled oscillator evolves on T rather than R.
Consequently, all nontrivial globally defined feedback controllers
for this system are nonlinear.

A. Dynamic feedback

Each vertex i employs dynamic feedback, maintaining an
auxiliary local state γi(·) taking values in R. Vertex i updates its
auxiliary state according to dynamics of the form

γ̇i(t) = civi(t) , (4)

where vi(·) is the R-valued control signal for the local dynamic
feedback, and ci is another unknown positive scalar constant. For
example, if vertex i uses its local phase φi(·) as a proxy for the inac-
cessible global time t, then it might implement an update of the form

dγi
dφi

(t) =
vi(t)

ui(t)
, (5)

which is equivalent to (4) (with ci = ωi) whenever ui(·) is nonzero.
Or, as we will discuss in Section IV-A, the update in (4) might
represent an approximation to an asynchronous sampled-data
controller implementation in which the frequency of the driving
clock is unknown.

B. Summary of the problem statement

Our goal is to design control laws which asymptotically
synchronize the oscillators, that is, which ensure∣∣zi(t)− zj(t)∣∣→ 0 as t→∞ (6)

for all vertices i, j∈V , and furthermore guarantee that the control
signals ui(·) converge to nonzero constants in forward time. These
control laws should not depend on the nominal frequencies ωi,
the gains ci, or the global time t. In addition, these control laws

should be decentralized, meaning that the control for each vertex
should depend only on information it receives from its immediate
neighbors in the graph G. Moreover, the control laws should not
require any knowledge of the global graph topology, other than a
known upper bound on the number n of vertices of G. Finally, we
assume that each vertex i can measure its own oscillator state zi(·)
without noise or delay.

To summarize, the control system consists of the equations

żi(t) = jωiui(t)zi(t) zi(t) ∈ T (7)
γ̇i(t) = civi(t) γi(t) ∈ R (8)

for each vertex i∈V , or, in terms of phase angles,

φ̇i(t) = ωiui(t) φi(t) ∈ R (9)
γ̇i(t) = civi(t) γi(t) ∈ R (10)

for each vertex i∈V . We can define control laws as functions of
the phase angles φi(·) rather than the actual oscillator states zi(·),
provided they are periodic with period 2π in each angle. Our goal
is to find decentralized control laws so that for (almost) every
closed-loop trajectory (z(·), γ(·)), where z = [z1 . . . zn]T ∈ Tn
and γ = [γ1 . . . γn]T ∈ Rn, there exists a nonzero constant
ω?∈ R such that both

φ̇i(t) = ωiui(t)→ ω? (frequency consensus) and∣∣zi(t)− zj(t)∣∣→ 0 (phase consensus)

as t→∞, for all i, j∈V . In addition, γ(·) must remain bounded
in forward time.

C. Proposed solutions

We propose two different sets of control laws for the dynamics
(7)–(8) or (9)–(10). They are both first-order dynamic controllers
as γi(t) ∈ R in (8) and (10). The simpler of the two, which we call
the φ-controller because it requires the exchange of only the phase
information φi(·) between neighbors, consists of the control laws

ui(t) = ki
(
γi(t)

)
vi(t) + σi

(
γi(t)

)
(11)

vi(t) =
∑
j∈Ni

aijfij
(
φj(t)− φi(t)

)
, (12)

where the constants aij are strictly positive edge weights with
aij = aji, the set Ni ⊂ V is the set of neighbors of vertex i,
and σi(·), ki(·), and fij(·) are real-valued functions on R, with
fij(·) ≡ fji(·). As described below, we will require each fij(·) to be
periodic with period 2π so that these control laws represent functions
of the actual oscillator states zi(·). Vertex i can implement the
control laws (11)–(12) without requiring direct access to the global
time variable t, provided it can measure its own states φi(·) and
γi(·) together with its neighbors’ phases φj(·) with no noise or delay.
Note that this φ-controller does not require neighboring vertices to
exchange direct information about their auxiliary states γi(·).

To describe the second controller, we assume that the graph G
has an orientation in which each vertex knows whether it is the head
or the tail of each of its incident edges. Thus for each vertex i we
can write its neighbor set Ni as the disjoint union Ni = N+

i ∪N−i ,
where N+

i denotes the neighbors of i for which i acts as the head
of the corresponding edge and N−i denotes the neighbors of i
for which i acts as the tail of the corresponding edge. Such an
orientation might come from assigning a unique identifier to each
vertex from some linearly ordered set, with each pair of neighboring
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vertices exchanging these identifiers to agree on which one is the
head of the edge. In this way we will have j ∈ N+

i if and only if
i ∈ N−j . This second controller, which we call the φu-controller
because it requires the exchange of both φi(·) and ui(·) between
neighbors, consists of the control laws

ui(t) = σi
(
γi(t)

)
(13)

vi(t) =
∑
j∈Ni

aijfij
(
φj(t)− φi(t)

)
+
∑
j∈N+

i

αij
[
uj(t)− ρijui(t)

]
+
∑
j∈N−

i

αij
[
ρ−1

ij uj(t)− ui(t)
]
, (14)

where the constants αij are a second set of strictly positive edge
weights with αij = αji, and each constant ρij represents vertex
i’s estimate of the ratio ωi/ωj (note that, unlike the edge weights
aij and αij and the functions fij(·), the constants ρij are generally
not symmetric, that is, ρij 6= ρji in general). Any empty sums
in (14) should be taken as zero. We postpone until Section IV-B
our discussion about how each vertex can calculate its estimates
ρij, so for now we will assume that these estimates are exact
(ρij = ωi/ωj). In this case we can write (13)–(14) as

ui(t) = σi
(
γi(t)

)
(15)

vi(t) =
∑
j∈Ni

aijfij
(
φj(t)− φi(t)

)
+
∑
j∈Ni

ηij
[
ωjuj(t)− ωiui(t)

]
, (16)

where we have defined the scaled weights

ηij = ηji =


αij

ωj
if j ∈ N+

i

αij

ωi
if j ∈ N−i .

(17)

Unlike the φ-controller, this φu-controller requires neighboring
vertices to exchange direct information about their auxiliary states
γi(·) through the control values ui(·).

We next introduce notation for writing the overall coupled
dynamics in a compact form. Dropping the time dependence and
writing φi = φi(·) and γi = γi(·), we define state vectors

φ =
[
φ1 . . . φn

]T ∈Rn (18)

γ =
[
γ1 . . . γn

]T ∈Rn (19)

along with the following vectors and matrices:

Ω = diag{ω1, . . . , ωn} ∈Rn×n (20)

C = diag{c1, . . . , cn} ∈Rn×n (21)

K(γ) = diag
{
k1(γ1), . . . , kn(γn)

}
∈Rn×n (22)

A = diag
{
ai1j1, . . . , aimjm

}
∈Rm×m (23)

H = diag
{
ηi1j1, . . . , ηimjm

}
∈Rm×m (24)

Σ(γ) =
[
σ1(γ1) . . . σn(γn)

]T ∈Rn . (25)

Also, given y = [y1 . . . ym]T ∈ Rm we define

F(y) =
[
fi1j1(y1) . . . fimjm(ym)

]T ∈ Rm . (26)

Finally, let B ∈ {−1,0,1}n×m be an oriented incidence matrix
for the graph G. Then we can write the dynamics (9)–(10) with the

φ-controller (11)–(12) as

φ̇ = −ΩK(γ)BAF(BTφ) + ΩΣ(γ) (27)
γ̇ = −CBAF(BTφ) , (28)

and we can write the dynamics (9)–(10) with the φu-controller
(15)–(16) as

φ̇ = ΩΣ(γ) (29)
γ̇ = −CBAF(BTφ)−CBHBTΩΣ(γ) . (30)

Our assumptions on these controllers are as follows:

(A1) each σi(·) is C1 with a strictly positive derivative σ′i(·) and
is such that σi(0) = 0,

(A2) each ki(·) is C1 with strictly positive values,
(A3) each fij(·) is C∞,
(A4) each fij(·) is odd and periodic with period 2π,
(A5) for each ij ∈ E, there is a constant bij ∈

(
0, π
n−1

]
such that

f ′ij(θ) > 0 whenever |θ| ∈ [0, bij) and f ′ij(θ) < 0 whenever
|θ| ∈ (bij, π], and

(A6) the edge weight vector

a =
[
ai1j1 . . . aimjm

]T ∈ Rm (31)

is chosen at random from a continuous probability distribution
on the positive cone of Rm.

Assumptions (A1)–(A2) are easily satisfied by choice of the
functions σi(·) and ki(·) (for example, take σi(s) ≡ s and ki(·) ≡ 1
for each i). Assumption (A3) is stronger than the assumption in [26],
[27] that each fij(·) is merely C1. We use this stronger smoothness
assumption in the proof of Theorem 1, which in particular guarantees
that the out-of-phase trajectories are isolated in an appropriate sense.
Such isolation is implicitly assumed but not verified in [27], and
it remains unclear whether it holds in general unless each fij(·) is
sufficiently smooth. Assumptions (A4)–(A5) are from [26], [27]. To
choose values of the parameters bij in assumption (A5), we require
knowledge of an upper bound on n, which is the number of vertices
of the graph G. Finally, assumption (A6) allows us to state that, with
probability one, we avoid a zero-measure set of “bad” edge weights
for which our stability analysis does not guarantee convergence.

D. Coupling Function

Examples of phase-coupling functions fij(·) which satisfy
assumptions (A3)–(A5) for a constant bij ∈

(
0, π
n−1

]
are shown

in Fig. 1. The first example is given by the formula

fij(θ) =
[
1− cos(bij)

] sin(θ)

1− cos(bij) cos(θ)
. (32)

This function is related to the characteristic of certain “tanlock”
phase detectors [28], and it generates the pure sine coupling
fij(·) ≡ sin(·) when bij = π

2 . The other example is the periodic
extension of the sum of a linear function and the integral of a bump
function with support on the interval [−bij, bij]. Both examples
are normalized to have unit derivative at zero, which means they
should result in similar performance for small deviations around a
stable synchronized trajectory. When bij is small (which we require
when n is large), the magnitude of the derivative of the tanlock func-
tion is small on the interval [π2 , π] when compared to the magnitude
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−π −bij 0 bij π
−0.4

−0.2

0

0.2

0.4
tanlock
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Fig. 1: Examples of phase-coupling functions fij(·) when bij = 0.5.

of the derivative of the bump-based function. As a result, the bump-
based function may provide faster convergence to a synchronized
state when some initial phase differences are greater than π

2 .
Note that when n > 3, assumption (A5) rules out the sinusoidal

phase-coupling function fij(·) ≡ sin(·). In fact, the requirement
that f ′ij(·) < 0 on the interval ( π

n−1 , π] is close to being necessary.
Indeed, one can show that if both fij(2π

n ) and f ′ij(
2π
n ) are positive

for each edge ij ∈ E and for some n > 3, then there always
exists a continuous probability distribution in assumption (A6)
such that for almost all edge weights, the closed-loop dynamics
under either of our two controllers, evolving over the simple cycle
graph having n vertices, admit an asymptotically stable trajectory
exhibiting frequency consensus but not phase consensus. The
gap between our assumption that bij 6 π

n−1 and this necessary
condition bij 6 2π

n is less than a factor of two.

III. Convergence analysis

Our goal in this section is to prove that under assumptions
(A1)–(A6) in Section II-C, both the φ-controller (11)–(12) and the
φu-controller (15)–(16) guarantee that for almost all initial states
(z(0), γ(0)) ∈ Tn× Rn, the closed-loop trajectory (z(·), γ(·)) of
the system (7)–(8) is bounded in forward time, and furthermore
there exists a nonzero constant ω? ∈ R such that both

φ̇i(t) = ωiui(t)→ ω? (frequency consensus) and∣∣zi(t)− zj(t)∣∣→ 0 (phase consensus)

as t→∞, for all i, j∈V .
The convergence analysis has several steps. We first show that

generically, the system (7)–(8) with both controllers (φ and φu) con-
tains constant frequency orbits that are isolated in Tn (Theorem 1,
Corollary 2 and Lemma 3). This is sufficient to guarantee (almost)
global convergence to these orbits (Lemmas 5 and 6). Finally, we
provide a sufficient condition on the coupling that guarantees that the
only stable orbit is the phase consensus one (Theorems 4, 7 and 8).

We begin by defining unit vectors q1, q2 ∈ Rn as

q1 =
1n√
n
, q2 =

C−11n
‖C−11n‖

, (33)

where 1n ∈ Rn denotes the vector of n ones. We choose a matrix
Q1 ∈ Rn×(n−1) so that the square matrix [q1 Q1] is orthogonal,
and we define

Q2 = CQ1

(
QT

1C
2Q1

)−1
2 ∈ Rn×(n−1) . (34)

It is straightforward to show that [q2 Q2] is orthogonal. Note
that BT1n = 0 (a property of any oriented incidence matrix B),
which means BTq1 = 0 and BT = BTQ1Q

T
1 . Also, because G is

connected we have rank(B) = n− 1, and we conclude thatBTQ1

has independent columns. Finally, because qT2CB = 0, it follows
from (28) and (30) that qT2 γ̇(·) ≡ 0 for both the φ-controlled and
the φu-controlled systems, and we conclude that

γ̇(·) ≡ Q2Q
T

2 γ̇(·) (35)

along trajectories of either system.
We next introduce two subsets of Rn as follows:

Φ =
{
φ ∈ Rn : BAF(BTφ) = 0

}
(36)

Γ =
{
γ ∈ Rn : BTΩΣ(γ) = 0

}
. (37)

BecauseBT = BTQ1Q
T
1 and because the columnsQ1 andBTQ1

are independent, we can also write these sets as

Φ =
{
φ ∈ Rn : QT

1BAF(BTφ) = 0
}

(38)

Γ =
{
γ ∈ Rn : QT

1 ΩΣ(γ) = 0
}
. (39)

To further explore the structure of Φ, we define a related subset Φ[

of Rn−1 as follows:

Φ[ =
{
µ ∈ Rn−1 : BAF(BTQ1µ) = 0

}
=
{
µ ∈ Rn−1 : QT

1BAF(BTQ1µ) = 0
}

(40)

so that φ ∈ Φ if and only if QT
1φ ∈ Φ[. In other words, we can

write Φ as the internal direct sum

Φ = q1R⊕Q1Φ[ . (41)

Moreover, because F(0) = 0 from (A4), the set Φ[ contains the
zero vector and is therefore nonempty. Furthermore, the points
in Φ[ are isolated, at least with probability one with respect to the
distribution in assumption (A6). To prove this, we define two matrix
functions L : Rn−1 → Rn×n and L[ : Rn−1 → R(n−1)×(n−1) by

L(µ) = BAF ′
(
BTQ1µ

)
BT (42)

L[(µ) = QT

1L(µ)Q1 , (43)

where F ′(·) denotes the Jacobian matrix

F ′(y) = diag
{
f ′i1j1(y1), . . . , f ′imjm(ym)

}
(44)

with y = [y1 . . . ym]T ∈ Rm. For eachµ ∈ Rn−1,L(µ) represents
a weighted Laplacian matrix for the graph G, and L[(µ) represents
a “reduced” Laplacian in the sense that L(µ) is similar to the block
diagonal matrix diag

{
0,L[(µ)

}
. Note that L(·) ≡ Q1L

[(·)QT
1 .

Theorem 1. There is a set Z ⊂ Rm having zero Lebesgue measure
such that if a 6∈ Z, where a denotes the edge weight vector in (31),
then L[(µ) is invertible for all µ ∈ Φ[.

Proof: We let T denote the finite collection of all m × m
diagonal matrices whose kth diagonal entries belong to the set
{f ′ikjk(0), f ′ikjk(π)}, where 1 6 k 6 m. For each such matrix
∆ ∈ T, we define the closed set

P∆ =
{
x ∈ Rm : det

(
QT

1B diag(x)∆BTQ1

)
= 0
}
, (45)

where diag(x) = diag{x1, . . . , xm} denotes the diagonal matrix
whose diagonal entries are them elements of x. Now ∆ is invertible
by assumption (A5), and furthermore the columns of BTQ1 are
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independent; it follows thatP∆ 6= Rm (take diag(x) = ∆−1), which
meansP∆ is a Zariski-closed set having zero measure. It follows that

P =
⋃

∆∈T
P∆ (46)

is also a Zariski-closed set having zero measure. Therefore the set
U = Rm \ P is a nonempty Zariski-open set. Next we define the
mapping H : Rn−1 ×U→ Rn−1 by

H(z, x) = QT

1B diag(x)F(BTQ1z) . (47)

The Jacobian matrix of H is

DH(z, x) =

ï
∂H

∂z
(z, x)

∂H

∂x
(z, x)

ò
, (48)

where
∂H

∂z
(z, x) = QT

1B diag(x)F ′(BTQ1z)B
TQ1 (49)

∂H

∂x
(z, x) = QT

1B diag
(
F(BTQ1z)

)
. (50)

If we define the matrix

J(z, x) =

 I

diag(x) diag
(
F(BTQ1z)

)+
·
[
F ′(0)− F ′(BTQ1z)

]
BTQ1

 , (51)

where (·)+ denotes the Moore–Penrose pseudoinverse, then

DH(z, x) · J(z, x) = QT

1B diag(x)∆(z)BTQ1 , (52)

where ∆(z) is the diagonal matrix

∆(z) = F ′(BTQ1z)

+ diag
(
F(BTQ1z)

)
diag

(
F(BTQ1z)

)+
·
[
F ′(0)− F ′(BTQ1z)

]
. (53)

Assumptions (A3)–(A5) imply that fikjk(θ) = 0 if and only if
θ = `π for some ` ∈ Z, so for any z ∈ Rn−1, the matrix ∆(z)
belongs to T. It follows from the definition of U that the matrix
in (52) is invertible, and we conclude thatDH(z, a) has rank n− 1
for all (z, x) ∈ Rn−1× U. Thus H t {0},1 and it follows from
the parametric transversality theorem [29, Theorem 6.35] that there
exists a set Y ⊂ U having zero measure such that if x ∈ U \ Y
then Hx t {0}, where Hx denotes the mapping z 7→H(z, x). Let
Z = P ∪ Y; we have thus shown that for all x ∈ Rm \ Z, if z is
such that H(z, x) = 0, then the matrix in (49) is invertible.

Now suppose a ∈ Rm is the edge weight vector in (31) so
that diag(a) = A, and suppose a 6∈ Z. If µ ∈ Φ[, then from (40)
and (47) we have H(µ,a) = 0; thus L[(µ) in (43), which is the
matrix in (49) with z = µ and x = a, is invertible.

Corollary 2. If a 6∈ Z then the points in Φ[ are isolated.

Proof: Define the mapping P : Rn−1 → Rn−1 by setting
P(µ) = QT

1BAF(BTQ1µ) so that Φ[ is the zero set of P . The
Jacobian matrix for P is P ′(µ) = L[(µ), which by Theorem 1 is
invertible for all µ ∈ Φ[. The result then follows from the inverse
function theorem.

1If M and N are smooth manifolds, if f : N → M is smooth, and if S is an
embedded submanifold of M , then f is transverse to S, written f t S, when for
every p ∈ f−1(S) we have Tf(p)M = Tf(p)S + dfp(TpN), where dfp denotes
the differential of f at p.

To further explore the structure of Γ, for each r ∈ R we define
a subset Γ[(r) of Rn−1 as

Γ[(r) =
{
ν ∈ Rn−1 : QT

1 ΩΣ(q2r+Q2ν) = 0
}

(54)

so that γ ∈ Γ if and only ifQT
2γ ∈ Γ[(qT2 γ).

Lemma 3. For each r ∈ R, the set Γ[(r) is nonempty and has
isolated points.

Proof: The functionW : Rn → [0,∞) defined as

W(γ) =
n∑
i=1

ωi
ci

∫ γi

0

σi(s)ds , (55)

is proper and has a derivative given by the row vector

W ′(γ) = ΣT(γ)ΩC−1 . (56)

We fix r ∈ R and define the function Wr : Rn−1→ [0,∞) by
setting Wr(ν) = W(q2r +Q2ν). The derivative of Wr(·) along
trajectories of the system

ν̇ = −QT

1 ΩΣ(q2r+Q2ν) (57)

is given by

Ẇr = −ΣT(q2r+Q2ν)ΩC−1Q2Q
T

1 ΩΣ(q2r+Q2ν)

= −PT(ν)
(
QT

1C
2Q1

)−1
2P(ν) 6 0 , (58)

where the mappingP : Rn−1 → Rn−1 is defined by the expression
P(ν) = QT

1 ΩΣ(q2r+Q2ν). NowWr(·) is proper (becauseQ2 has
independent columns) and nonnegative, so we conclude from the
Krasovskii-LaSalle invariance theorem that the trajectories of (57)
converge to the zero set of P(·), which is Γ[(r). Thus Γ[(r) 6= ∅.
The Jacobian matrix for P is P ′(ν) = QT

1 ΩΣ′(q2r + Q2ν)Q2,
where Σ′(·) denotes the Jacobian matrix

Σ′(γ) = diag
{
σ′1(γ1), . . . , σ′n(γn)

}
. (59)

It follows from (A1) that the matrix function

QT

1 ΩΣ′(·)Q2 = QT

1 ΩΣ′(·)CQ1

(
QT

1C
2Q1

)−1
2 (60)

is everywhere invertible, and thus the Jacobian matrix P ′(·) is
everywhere invertible. The inverse function theorem then implies
that the points in Γ[(r) are isolated.

We next describe a property of the matrix function L[(·) which
we will later use to show that all out-of-phase trajectories are
unstable. We partition the set Φ as Φ = Φin ∪Φout, where

Φin =
{
φ ∈ Φ : BTφ mod 2π = 0

}
(61)

Φout =
{
φ ∈ Φ : BTφ mod 2π 6= 0

}
. (62)

Because the graph G is connected, the set Φin represents those phase
vectors in Φ which have all components in phase, whereas Φout

represents vectors in Φ for which at least two components are out
of phase. The proof of the following theorem can be found in [25].

Theorem 4. If φ ∈ Φin then L[(QT
1φ) > 0. If instead φ ∈ Φout

then L[(QT
1φ) has a strictly negative eigenvalue.

Next, given y = [y1 . . . ym]T ∈ Rm we define

V (y) =
m∑
k=1

aikjk

∫ yk

0

fikjk(s)ds , (63)
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and we observe that V̇ = FT(y)Aẏ. Likewise, we defineW(·) as
in (55) and observe that Ẇ = ΣT(γ)ΩC−1γ̇. Thus the derivative
of the nonnegative potential function

U(φ,γ) = V (BTφ) +W(γ) (64)

along trajectories of (27)–(28) is

U̇ = FT(BTφ)ABT
[
−ΩK(γ)BAF(BTφ) + ΩΣ(γ)

]
−ΣT(γ)ΩBAF(BTφ)

= −FT(BTφ)ABTΩK(γ)BAF(BTφ) , (65)

and its derivative along trajectories of (29)–(30) is

U̇ = FT(BTφ)ABTΩΣ(γ)

+ ΣT(γ)Ω
[
−BAF(BTφ)−BHBTΩΣ(γ)

]
= −ΣT(γ)ΩBHBTΩΣ(γ) . (66)

The matrices Ω,K(γ), andH are all diagonal and positive definite,
which means in either case we have d

dtU 6 0. Also, U(φ,γ) is
2π-periodic in each component φi of φ, so we may regard U as
a function defined on Tn×Rn, and as such it is proper. Thus U is a
proper, nonnegative function that is nonincreasing along trajectories,
and we conclude that all trajectories (z(·), γ(·)) are bounded in
forward time.

It follows from (65) and the Krasovskii-LaSalle invariance
theorem that all trajectories (φ(·), γ(·)) of the φ-controlled system
(27)–(28) converge to the largest invariant set Mφ contained within
the set Φ×Rn. Likewise, it follows from (66) that all trajectories
(φ(·), γ(·)) of the φu-controlled system (29)–(30) converge to the
largest invariant set Mφu contained within the set Rn× Γ. We
next show that in fact we have Mφ = Mφu= Φ×Γ, at least with
probability one with respect to the distribution in assumption (A6).

Lemma 5. If a 6∈ Z then Mφ = Φ×Γ.

Proof: Suppose (φ?(·), γ?(·)) is a trajectory of theφ-controlled
system (27)–(28) which is confined to the set Φ×Rn. Then from (28)
and (36) we have γ̇?(·) ≡ 0, which means γ?(·) ≡ γ? is constant.
Thus from (27) we see that d

dtφ
?(·) ≡ ΩΣ(γ?) is also constant,

that is, its second derivative is zero:

0 = φ̈?(t)

= −ΩK(γ?)BAF ′
(
BTφ?(t)

)
BTΩΣ(γ?)

= −ΩK(γ?)BAF ′
(
BTQ1Q

T

1φ
?(t)
)
BTΩΣ(γ?)

= −ΩK(γ?)L
(
QT

1φ
?(t)
)
ΩΣ(γ?)

= −ΩK(γ?)Q1L
[
(
QT

1φ
?(t)
)
QT

1 ΩΣ(γ?) (67)

for all t ∈ R. NowQ1 has independent columns and L[
(
QT

1φ
?(·)
)

is everywhere invertible from Theorem 1, so (67) implies that
QT

1 ΩΣ(γ?) = 0, or equivalently γ?∈ Γ. Now Mφ is the union of
the images of all such trajectories (φ?(·), γ?(·)), and so we conclude
that Mφ ⊂ Φ×Γ. But Φ×Γ is itself invariant under the dynamics
(27)–(28): if (φ(t), γ(t)) ∈ Φ×Γ for some t, then γ̇(t) = 0 and
BT d

dtφ(t) = 0, which means (φ(·), γ(·)) must remain in Φ×Γ both
forward and backward in time. Therefore Mφ = Φ×Γ as desired.

Lemma 6. Mφu = Φ×Γ.

Proof: Suppose (φ?(·), γ?(·)) is a trajectory of the φu-
controlled system (29)–(30) which is confined to the set Rn× Γ.

Then from (39) we have

QT

1 ΩΣ
(
γ?(·)

)
≡ 0 . (68)

Taking the derivative of (68) and applying (35) yields

QT

1 ΩΣ′
(
γ?(·)

)
Q2Q

T

2 γ̇
?(·) ≡ 0 . (69)

The matrix function in (60) is everywhere invertible, and we
conclude from (69) that QT

2 γ̇
?(·) ≡ 0. Thus (35) implies that

γ̇?(·) ≡ 0, which together with (30) and (37) implies that φ?(·)
is confined to the set Φ in (36). Now Mφu is the union of the
images of all such trajectories (φ?(·), γ?(·)), and so we conclude
that Mφu ⊂ Φ×Γ. But Φ×Γ is itself invariant under the dynamics
(29)–(30) (by the same argument used in the proof of Lemma 5),
and it follows that Mφu = Φ×Γ as desired.

From now on we will assume a 6∈ Z, an assumption that is valid
with probability one according to (A6). Thus from Lemmas 5 and 6
we see that all trajectories (φ(·), γ(·)) of both the φ-controlled
system (27)–(28) and the φu-controlled system (29)–(30) converge
to the invariant set M = Φ×Γ. Thus φ(t) → Φ as t → ∞, and
it follows from (41) thatQT

1φ(t)→ Φ[ as t→∞. We know from
Corollary 2 that the points in Φ[ are isolated, hence there exists
a constant µ? ∈ Φ[ (which depends on the initial state) such that
QT

1φ(t)→ µ? as t→∞.
Likewise, we have seen in (35) that qT2 γ̇(·) ≡ 0, which means

the state space of either system admits a foliation whose leaves are
the invariant manifolds

Ξ(r) =
{

(φ,γ) ∈ Rn×Rn : qT2 γ = r
}

(70)

for constant parameters r ∈ R. Now γ(t) → Γ as t → ∞, and
we conclude that QT

2γ(t) converges to Γ[
(
qT2 γ(0)

)
as t → ∞. It

follows from Lemma 3 that the points in Γ[
(
qT2 γ(0)

)
are isolated,

hence there exists a constant ν?∈ Γ[
(
qT2 γ(0)

)
(which depends on

the initial state) such that QT
2γ(t) → ν? as t → ∞. If we define

γ? = q2q
T
2 γ(0) +Q2ν

?, then we haveQT
1 ΩΣ(γ?) = 0 and thus

ΩΣ(γ?) = q1q
T

1 ΩΣ(γ?) = ω?1n , (71)

where ω? denotes the constant

ω? =
1

n
1T

nΩΣ(γ?) . (72)

It follows from (71) and (A1) that ω?= 0 if and only if γ?= 0. In
particular, if qT2 γ(0) 6= 0, which is true for almost every initial state,
then qT2 γ

? = qT2 γ(0) 6= 0 and thus ω? 6= 0. Because φ(t) → Φ
and γ(t)→ γ? as t→∞, we have d

dtφ(t)→ ΩΣ(γ?) as t→∞
for either system, and it follows from (71) that we indeed achieve
frequency consensus with ω? 6= 0 from almost every initial state.

We now examine the dynamics of both systems on the invariant
manifolds Ξ(·) in (70). Fix a parameter r ∈ R, choose a pair
(µ?, ν?) ∈ Φ[× Γ[(r), and define error coordinates

w1(·) = QT

1φ(·)− µ? ∈ Rn−1 (73)

w2(·) = QT

2γ(·)− ν? ∈ Rn−1 . (74)

Suppose (φ(0), γ(0)) ∈ Ξ(r); then

γ(·) ≡ q2qT2 γ(·) +Q2Q
T

2γ(·)
≡ q2r+Q2

[
w2(·) + ν?

]
≡ Q2w2(·) + γ? , (75)
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where we have defined γ? = q2r + Q2ν
?. In addition we have

BTφ(·) ≡ BTQ1w1(·)+BTQ1µ
?. Hence the derivatives of the error

coordinates (73)–(74) for the φ-controlled system (27)–(28) are

ẇ1 = −QT

1 ΩK(Q2w2 + γ?)BAF
(
BTQ1w1 +BTQ1µ

?
)

+QT

1 ΩΣ(Q2w2 + γ?) (76)

ẇ2 = −QT

2CBAF
(
BTQ1w1 +BTQ1µ

?
)
. (77)

Likewise, the derivatives of these error coordinates for the
φu-controlled system (29)–(30) are

ẇ1 = QT

1 ΩΣ(Q2w2 + γ?) (78)

ẇ2 = −QT

2CBAF
(
BTQ1w1 +BTQ1µ

?
)

−QT

2CBHB
TΩΣ(Q2w2 + γ?) . (79)

Each of these is an autonomous system in (w1,w2), with an
equilibrium at (0,0). The linear approximation of the system
(76)–(77) about this zero equilibrium is

ẇ1 ≈ −QT

1 ΩK(γ?)L(µ?)Q1w1 +QT

1 ΩΣ′(γ?)Q2w2 (80)
ẇ2 ≈ −QT

2CL(µ?)Q1w1 . (81)

Likewise, the linear approximation of the system (78)–(79) about
this zero equilibrium is

ẇ1 ≈ QT

1 ΩΣ′(γ?)Q2w2 (82)
ẇ2 ≈ −QT

2CL(µ?)Q1w1 −QT

2CBHB
TΩΣ′(γ?)Q2w2 . (83)

If we define the (n− 1)× (n− 1) matrices

L1 = L[(µ?) (84)
L2 = QT

1BHB
TQ1 > 0 (85)

X = QT

1 ΩK(γ?)Q1 > 0 (86)

Y = QT

2CQ1 =
(
QT

1C
2Q1

)1
2 > 0 (87)

Z = QT

1 ΩΣ′(γ?)Q2 = YQT

2 ΩC−1Σ′(γ?)Q2 , (88)

then we can write these approximations more compactly as

ẇ1 ≈ −XL1w1 +Zw2 (89)
ẇ2 ≈ −YL1w1 (90)

for the φ-controlled system and

ẇ1 ≈ Zw2 (91)
ẇ2 ≈ −YL1w1 − YL2Zw2 (92)

for the φu-controlled system. We can analyze the stability of
the equilibrium at the origin of each linearized system using the
following two theorems, whose proofs we omit; the first follows
from a Lyapunov function analysis, and the second follows from
Corollary 2 of Theorem 5 in [30].

Theorem 7. Let Λ ∈ R2p×2p be the block matrix

Λ =

ï−XL1 Z
−YL1 0

ò
, (93)

where L1,X,Y,Z ∈ Rp×p satisfy:

1) L1 is symmetric,
2) X+XT > 0,
3) Y is symmetric and invertible, and
4) Y −1Z is symmetric with Y −1Z > 0.

If L1 has a strictly negative eigenvalue, then Λ has an eigenvalue
with a strictly positive real part. If instead Z is invertible and
L1 > 0, then Λ is Hurwitz.

Theorem 8. Let Λ ∈ R2p×2p be the block matrix

Λ =

ï
0 Z

−YL1 −YL2Z

ò
, (94)

where L1,L2, Y,Z ∈ Rp×p satisfy:
1) L1 is symmetric and invertible,
2) L2 is symmetric with L2 > 0,
3) Y is symmetric and invertible, and
4) Y −1Z is symmetric with Y −1Z > 0.

If L1 has a strictly negative eigenvalue, then Λ has an eigenvalue
with a strictly positive real part. If instead L1 > 0, then Λ is
Hurwitz.

First suppose thatQ1µ
?∈Φin, so that the equilibrium at the origin

represent an in-phase solution. Then Theorem 4 impliesL[(µ?) > 0,
and it follows from Theorems 7 and 8 (respectively) that the origin
of either linearized system is exponentially stable. We conclude
that the origin of each nonlinear system (76)–(77) and (78)–(79) is
also exponentially stable. Next suppose Q1µ

? ∈ Φout, so that the
equilibrium at the origin represent an out-of-phase solution. Then
Theorem 4 implies that L[(µ?) has a strictly negative eigenvalue,
and it follows from Theorems 7 and 8 (respectively) that the origin
of either linearized system is exponentially unstable. We conclude
that the origin of each nonlinear system (76)–(77) and (78)–(79) is
also exponentially unstable. Because all out-of-phase equilibria are
both isolated and exponentially unstable, we conclude (say from [31,
Proposition 1], for example) that for either system, the set Sr ⊂ Ξ(r)
of initial states from which trajectories converge to out-of-phase
solutions has zero measure with respect to the (2n−1)-dimensional
Lebesgue measure on Ξ(r). It then follows from Tonelli’s theorem
that the set S =

⋃
r∈R Sr has zero measure in R2n. In other words,

both systems achieve phase consensus from almost every initial state.

IV. Discussion and RelatedWork

The solutions presented in this paper can be implemented, when
the σi(·) are linear and the ki(·) are constant, using interconnected
phase-locked loops (PLLs) as described in the survey paper [17]. In
fact, the φ and φu controllers simply represent additional loop filters
within the PLL. For instance, theφ-controller can be implemented by
adding a linear proportional-integral (PI) loop filter having unknown
(or uncertain) proportional and integral gains. As such, its lineariza-
tion has a structure reminiscent of the PI consensus systems devel-
oped in [22], [32], [33]. Similarly, the φu-controller may be imple-
mented using the linear phase detector discussed in [17] with a loop
filter composed by a proportional-derivative (PD) stage followed by
an integrator (I). Unfortunately, its implementation is harder as the
proportional component must be modified to implement fij(·) and
communications should be point to point. A linearized version of this
system resembles the double integrator consensus system studied in
[34], [35]. Nevertheless, unlike our present paper, neither [17] nor
the related work cited here provide a global convergence analysis
for the case of nonlinear phase-coupling functions fij(·).
A. Asynchronous sampled-data updates

In many applications, the signals ui(·), vi(·), and γi(·) are
piecewise constant, changing only at discrete update times in an
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asynchronous manner. Moreover, each vertex i sends only the
sampled value of its oscillator phase φi(·) at each of its update
times (together with its current value of ui(·) for the φu-controller),
and its neighbors do not receive further information from it until
it updates again. Because the same information must be sent to
each neighbor, a vertex might simply multicast a single datagram
to its entire neighborhood at each of its update times to achieve the
required information exchange.

Our continuous-time models (7)–(10) are consistent with such
asynchronous updates, at least under fast sampling. Indeed, suppose
vertex i updates its controls every δi > 0 seconds, starting at some
time offset t0i , so that updates occur at times tki = t0i + kδi for k =
0,1,2, . . .. To maintain consistency with our problem statement, we
assume that neither the update periods δi nor the offsets t0i are known.
Suppose agent i updates its auxiliary state vector γi(·) as follows:

γi(t
k+1
i ) = γi(t

k
i ) + hivi(t

k
i ) , (95)

where hi > 0 represents the step size. We define the (unknown)
constant ci = hi/δi and rewrite (95) as

γi(t
k+1
i )− γi(tki )

δi
= civi(t

k
i ) . (96)

Taking the limit of both sides as δi and hi both go to zero (while ci
remains constant), we obtain (4) with t = tki . Hence our continuous-
time models (7)–(10) approximate the behavior of the system
under asynchronous sampled-data updates, provided the update
periods δi and step sizes hi are sufficiently small. Our simulations
in Section V will confirm that this approximation is valid.

B. Estimating ωi/ωj

Recall that the φu-controller in (13)–(14) requires each agent
i ∈ V to maintain an estimate ρij of the ratio ωi/ωj for each of
its neighbors j ∈ Ni. We now outline one way to generate such
estimates. Suppose vertex i calculates the derivative of its neighbor
j’s phase φj(·) with respect to its own phase φi(·):

dφj
dφi

(t) =
φ̇j(t)

φ̇i(t)
=
ωjuj(t)

ωiui(t)
. (97)

Then at any time t for which (97) is defined and nonzero, and for
which also ui(t) 6= 0, vertex i can calculate ρij as

ρij =
uj(t)

ui(t)

[dφj
dφi

(t)
]−1

, (98)

so that ρij = ωi/ωj. In practice, vertex i can calculate the derivative
in (98) only approximately, so that the resulting value of ρij is
only an approximation of ωi/ωj. In the sampled-data formulation,
vertex i should record the current value of its own phase φi(·)
each time it receives an updated value of the phase φj(·) from its
neighbor j. If previous such (φi, φj)-pairs are stored in memory on
vertex i, then it can use finite differences to estimate the derivative
in (98). Further analysis is needed to determine how inaccuracies
in this derivative calculation (e.g., due to communication noise or
delay) might affect the performance of the φu-controlled system.

V. Simulations

For our simulations, we used the graph shown in Fig. 2 which
has n = 50 vertices. We assigned each edge ij ∈ E the weight
aij = xij/(degi + degj), where xij was chosen at random from
a log-normal distribution, and degi and degj denote the respective

Fig. 2: The graph we used for our simulations, with n = 50 vertices.

0 200 400 600 800 1000
10−11

10−8

10−5

10−2

101

Time t (sec)

φ
er

r
(r

ad
)

φ-controller
φu-controller

Fig. 3: Phase error φerr(·) for the continuous dynamics (27)–(30).

degrees of the incident vertices. These edge weights aij ranged in
value from 8.8 to 71.6. The second set of edge weights αij in (14)
were chosen as αij = 0.25aij for each edge ij ∈ E. The values for
the nominal oscillator frequencies ωi were chosen at random from
a log-normal distribution, and ranged in value from 0.13 rad/sec to
0.63 rad/sec. We chose functions σi(s) ≡ 0.1s and ki(·) ≡ 0.025 for
each vertex i, and we used the bump-based phase-coupling function
for each fij(·) with bij = 0.05. The initial phase angles φi(0) and
auxiliary variables γi(0) were chosen at random.

To measure the performance of the system, we define the
maximum phase error as

φerr(t) = max
i,j∈V

d
(
zi(t), zj(t)

)
, (99)

where d(·, ·) denotes the Riemannian distance (in radians) on T.
Fig. 3 shows the phase error for the continuous-time dynamics
(27)–(28) and (29)–(30). We we can see that both controllers
achieve synchronization (this phase error converges to zero). The
consensus frequency in each case is ω? = 0.4 rad/sec.

We next simulated the system under the asynchronous sampled-
data updates described in Section IV-A, using identical step sizes
of hi = 0.003. The time offsets t0i and update periods δi were
chosen at random, with the latter ranging in value from 4.8 msec
to 18.1 msec. For the φu-controller, the constants ρij in (14) were
estimated using finite differences as described in Section IV-B.
Unfortunately, neither controller produced the desired behavior
under these sampled-data updates: although the phase error φerr(·)
again converged to zero, the auxiliary variables γi(·) also drifted
slowly to zero, causing the oscillators to eventually stop at a common
phase. To fix this, we simply projected the updates in (95) so that
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Fig. 4: Phase error φerr(·) for asynchronous sampled-data updates.

each γi(·) maintained its values within the interval [1,∞). For the
φu-controller, such projection has the added benefit of guaranteeing
that the oscillators never stop or reverse direction during the
transient, which may be required in some applications. To achieve
the same guarantee for the φ-controller, we also projected its control
values ui(·) to the interval [0.01,∞). The resulting phase errors
are shown in Fig. 4, and we now observe that they become small
but no longer converge to zero. (in each case, a second transient
which generates an increase in the phase error occurs when the
lower γi-projection limit becomes active). If needed for a particular
application, the steady-state phase error can always be made smaller
by decreasing the sample periods δi and step sizes hi (thereby better
approximating the continuous-time system). Here the φ-controller
achieves a consensus frequency of ω? = 0.046 rad/sec, whereas the
φu-controller achieves a consensus frequency of ω? = 0.063 rad/sec.

To test the robustness of the controllers, we again simulated the
system under asynchronous sampled-data updates, but now added
random jitter in the update times δi of up to ±10%. Furthermore,
communication datagrams between vertices were dropped at
random 25% of the time on average, and were otherwise subject to
random delays (with the delay being exponentially distributed with a
mean of 3.2 msec). As shown in Fig. 5, both controllers still achieve
synchronization under these conditions, but with slightly larger
steady-state phase errors. If we increase the average communication
delay to 4.0 msec, then the φ-controller still achieves (approximate)
synchronization within a similar time frame as before, but the
φu-controller does not (and extending the simulation time suggests
that it never does). In fact, the φ-controller seems to tolerate an
average communication delay of over 10.0 msec.

Finally, we simulated the system again under asynchronous
sampled-data updates, but now with each step size hi and update
period δi increased by a factor of 10 (representing a tenfold decrease
in the communication rate over each edge). Fig. 6 shows the results
with no update jitter or datagram drops or delays, but the results are
similar when these are included. We see that the φ-controller still
achieves (approximate) synchronization within a similar time frame
as before, whereas the φu-controller does not (again, extending the
simulation time suggests that it never does).

These simulations appear to suggest that the φ-controller is not
only simpler to implement but also provides better synchronization
performance that the φu-controller. However, without further study,
such a conclusion would only apply to the particular graph used
for the simulation and the particular values of all gains and other
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Fig. 5: Phase error φerr(·) for asynchronous sampled-data updates, with
update jitter, dropped datagrams, and random communication delays.
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Fig. 6: Phase error φerr(·) for asynchronous sampled-data updates, with
step sizes hi and update times δi increased by a factor of 10.

parameters in the system.

VI. Concluding remarks

We studied the problem of achieving a common phase and fre-
quency reference on networks of coupled oscillators having heteroge-
neous frequencies. We proposed two decentralized control laws that
achieve phase and constant-frequency synchronization for arbitrary
connected graphs under mild conditions on the phase-coupling
functions. We provided numerical results which verify that the algo-
rithms converge to a synchronized state and are reasonably robust to
random jitter, dropped datagrams and random communication delay.
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