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Abstract—This paper examines synchronization of computer
clocks connected via a data network and proposes a skewless
algorithm to synchronize them. Unlike existing solutions, which
either estimate and compensate the frequency difference (skew)
among clocks or introduce offset corrections that can generate
jitter and possibly even backward jumps, our algorithm achieves
synchronization without these problems. We first analyze the
convergence property of the algorithm and provide necessary
and sufficient conditions on the parameters to guarantee synchro-
nization. We then implement our solution on a cluster of IBM
BladeCenter servers running Linux and study its performance.
In particular, both analytically and experimentally, we show that
our algorithm can converge in the presence of timing loops. This
marks a clear contrast with current standards such as NTP
and PTP, where timing loops are specifically avoided. Further-
more, timing loops can even be beneficial in our scheme. For
example, it is demonstrated that highly connected subnetworks
can collectively outperform individual clients when the time
source has large jitter. It is also experimentally demonstrated
that our algorithm outperforms other well-established software-
based solutions such as the NTPv4 and IBM Coordinated Cluster
Time (IBM CCT).

I. INTRODUCTION

Keeping consistent time among different nodes in a
network is a fundamental requirement of many distributed
applications. Their internal clocks are usually not accurate
enough and tend to drift apart from each other over time,
generating inconsistent time values. Network clock synchro-
nization allows these devices to correct their clocks to match
a global reference of time, such as the Universal Coordi-
nated Time (UTC), by performing time measurements through
the network. For example, for the Internet, network clock
synchronization has been an important subject of research
and several different protocols have been proposed [1]–[7].
These protocols are used for various legacy and emerging
applications with diverse precision requirements such as bank-
ing transactions, communications, traffic measurement and
security protection. In particular, in modern wireless cellular
networks, time-sharing protocols need an accuracy of several
microseconds to guarantee the efficient use of channel ca-
pacity. Another example is the recently announced Google
Spanner [8], a globally-distributed database, which depends
on globally-synchronized clocks within at most several mil-
liseconds drifts.

There are two major difficulties that make the network
clock synchronization problem challenging. First, the fre-
quency of hardware clocks is sensitive to temperature and is
constantly varying. Second, the latency introduced by the OS
and network congestion delay results in errors in the time
measurements. Thus, most protocols introduce different ways
of estimating the frequency mismatch (skew) [10], [12] and

measuring the time difference (offset) [13], [14]. This leads to
extensive literature on skew estimation [10], [15]–[17] which
suggests that explicit skew estimation is necessary for clock
synchronization.

This paper takes a different approach and shows that
focusing on skew estimation could be misleading. We provide
a simple algorithm that is able to compensate the clock skew
without any explicit estimation of it. Our algorithm only uses
current offset information and an exponential average of the
past offsets. Thus, it neither needs to store long offset history
nor perform expensive computations on them. We analyze the
convergence property of the algorithm and provide necessary
and sufficient conditions for synchronization. The parameter
values that guarantee synchronization depend on the network
topology, but there exists a subset of them that is independent
of topology and therefore of great practical interest.

We also discover a rather surprising fact. A common
practice in the clock synchronization community is to avoid
timing loops in the network [1, p. 3] [3, p. 16, s. 6.2].
This is because it is thought that timing loops can introduce
instability as stated in [1]: ”Drawing from the experience
of the telephone industry, which learned such lessons at
considerable cost, the subnet topology... must never be allowed
to form a loop.” Even though for some parameter values
loops can produce instability, we show that a set of proper
parameters can guarantee convergence even in the presence of
loops. Furthermore, we experimentally demonstrate in Section
V that timing loops among clients can actually help reduce the
jitter of the synchronization error and is therefore desirable.

A. Related Work and Contribution

Clock synchronization on computer networks has been
subject of study for more than 20 years. The current de facto
standard for IP networks is the Network Time Protocol (NTP)
proposed by David Mills [1]. It is a low-cost, purely software-
based solution whose accuracy mostly ranges from hundreds
of microseconds to several milliseconds, which is often not
sufficient. On the other hand, IEEE 1588 (PTP) [3] gives
superior performance by achieving sub-microsecond or even
nanosecond accuracy. However, it is relatively expensive as it
requires special hardware support to achieve those accuracy
levels and may not be fully compatible with legacy cluster
systems.

More recently, new synchronization protocols have been
proposed with the objective of balancing between accu-
racy and cost. For example, IBM Coordinated Cluster Time
(CCT) [11] is able to provide better performance than NTP
without additional hardware. Its success is based on a skew
estimation mechanism [12] that progressively adapts the clock



frequency without offset corrections. Another alternative is the
RADclock [4], [7] which estimates the skew and produces
offset corrections, but provides a secondary relative clock that
is more robust to jitter.

The solution provided in this paper solves problems
present on IBM CCT and RADclock. We are able to achieve
microsecond level accuracy without requiring any special
hardware as the previous solutions. However, our protocol
does not explicitly estimate the skew, which makes the imple-
mentation simpler and more robust to jitter than IBM CCT,
and does not introduce offset corrections, which avoids the
need of a secondary clock as in RADclock. Furthermore,
we present a theoretical analysis of its behavior in network
environments that unveils some rather surprising facts.

The rest of the paper is organized as follows. In Section
II we provide some background on how clocks are actually
implemented in computers and how different protocols disci-
pline them. Section III motivates and describes our algorithm
together with an intuitive explanation of why it works. In
Section IV, we analyze the algorithm and determine the set
of parameter values and connectivity patterns under which
synchronization is guaranteed. Experimental results evaluating
the performance of the algorithm are presented in Section V.
We conclude in Section VI.

II. SYNCHRONIZATION OF COMPUTER CLOCKS

Most computer architectures keep their own estimate of
time using a counter that is periodically increased by either
hardware or kernel’s interrupt service routines (ISRs). On
Linux platforms for instance, there are usually several different
clock devices that can be selected as the clock source by
changing the clocksource kernel parameter. One particular
counter that has recently been used by several clock synchro-
nization protocols [4], [11] is the Time Stamp Counter (TSC)
that counts the number of CPU cycles since the last restart
of the system. For example, in the IBM BladeCenter LS21
servers, the TSC is a 64-bit counter that increments every
δo = 0.416ns since the CPU nominal frequency fo = 1/δo =
2399.711MHz.

Based on this counter, each server builds its own estimate
xi(t) of the global time reference, UTC, denoted here by t.
Thus, synchronizing computer clocks implies correcting xi(t)
in order to match t, i.e. enforcing xi(t) = t. There are two
difficulties on this estimation process. Firstly, the initial time
t0 in which the counter starts its unknown. Secondly, the
clock frequency is usually unknown with enough precision and
therefore presents a skew ri = xi(t)−xi(t0)

t−t0 . This is illustrated
in Figure 1a where xi(t) not only increases at a different
rate than t, but also starts from a value different from t0,
represented by xoi .

Mathematically, xi(t) can be described by the linear map
of the global reference t, i.e.

xi(t) = ris
o
i (t− t0) + xoi , (1)

where soi is an additional skew correction implemented to
compensate the skew ri; in Figure 1a soi = 1. Equation (1)
also shows that if one can set soi = 1/ri and xoi = t0, then
we obtain a perfectly synchronized clock with xi(t) = t.
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Fig. 1: Time estimation and relative measurements

The main problem is that not only neither t0 nor ri can
be explicitly estimated, but also ri varies with time as shown
in Figure 2a. Thus, current protocols periodically update soi
and xoi in order to keep track of the changes of ri. These
updates are made using the offset between the current estimate
xi(t) and the global time t, i.e. Dx

i (t) = t − xi(t), and the
relative frequency error that is computed using two offset
measurements separated by τ seconds, i.e.

ferri (t) :=
Dx
i (t)−Dx

i (t− τ)

xi(t)− xi(t− τ)
=

1− risoi
risoi

. (2)

Figure 1b provides an illustration of these measurements.
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Fig. 2: Comparison between two TSC counters, and skew and
offset corrections using adjtimex()

To understand the differences between current protocols,
we first rewrite the evolution of xi(t) based only on the time
instants tk in which the clock corrections are performed. We
allow the skew correction soi to vary over time, i.e. si(tk), and
write xi(tk+1) as a function of xi(tk). Thus, we obtain

xi(tk+1) = xi(tk) + τrisi(tk) + uxi (tk) (3a)
si(tk+1) = si(tk) + usi (tk) (3b)

where τ = tk+1− tk is the time elapsed between adaptations;
also known as poll interval [1]. The values uxi (tk) and usi (tk)
represent two different types of corrections that a given
protocol chooses to do at time tk and are usually implemented
within the interval (tk, tk+1). uxi (tk) is usually referred to as
offset correction and usi (tk) as skew correction.1 See Figure
2b for an illustration of their effect on the linux time.

1These corrections can be implemented in Linux OS using the adjtimex()
interface to update the system clock or by maintaining a virtual version of
xi(t) and directly applying the corrections to it, as in IBM CCT [11] and
RADclock [4]. The latter gives more control on how the corrections are
implemented since it does not depend on kernel’s routines.
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Fig. 3: Variations of NTP time using TSC as reference
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Fig. 4: Current Protocols Adaptation

We now proceed to summarize the different types of
adaptations implemented by current protocols. The main dif-
ferences between them are whether they use offset corrections,
skew corrections, or both, and whether they update using offset
values Dx

i (tk), relative frequency errors ferri (tk), or both.

A. Offset corrections

These corrections consist in keeping the skew fixed and
periodically introducing time changes of size uxi (tk) =
κ1D

x
i (tk) or uxi (tk) = κ1D

x
i (tk)+κ2f

err
i (tk) where κ1, κ2 >

0. They are used by NTPv3 [18] and NTPv4 [1] respectively
under ordinary conditions.

These protocols have in general a slow initialization period
as shown in Figure 3a. This is because the algorithm must first
obtain a very accurate estimate of the initial frequency error
ferri (t0). Furthermore, these updates usually generate non-
smooth time evolutions as in Figures 3b and 4a, and should
be done carefully since they might introduce backward jumps
(xi(tk+1) < xi(tk)), which can be problematic for some
applications.

B. Skew corrections

Another alternative that avoids using steep changes in time
is proposed by the IBM CCT solution [11]. This alternative
does not introduce any offset correction, i.e. uxi (tk) = 0, and
updates the skew si(tk) by usi (tk) = κ1D

x
i (tk) +κ2f

err
i (tk).

The behavior of this algorithm is shown in Figure 4b.
In [19] it was shown for a slightly modified version of it
(used risi(tk)ferri (tk) instead of ferri (tk)) the algorithm can
achieve synchronization for very diverse network architec-
tures.

However, the estimation of ferri (tk) is nontrivial as it is
constantly changing with subsequent updates of si(tk) and it
usually involves sophisticated computations [10], [12].
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Fig. 5: Unstable clock steering using only offset information
(4) and stable clock steering based on exponential average
compensation (6)

C. Skew and offset corrections

This type of corrections allow dependence on only offset
information Dx

i (tk) as input to uxi (tk) and usi (tk). For in-
stance, in [5] the update uxi (tk) = κ1D

x
i (tk) and usi (tk) =

κ2D
x
i (tk) was proposed.

This option allows the system to achieve synchronization
without any skew estimation. But the cost of achieving it, is
introducing offset corrections in xi(t) as shown in Figure 4c.
Therefore, it suffers from the same problems discussed in II-A.

III. SKEWLESS NETWORK SYNCHRONIZATION

We now present an algorithm that overcomes the limita-
tions of the solutions described in Section II. In other words,
our solution has the following two properties:

1) Continuity: The protocol does not introduce steep
changes on the time value, i.e. uxi (tk) ≡ 0.

2) Skew independence: The protocol does not use skew
information ferri (tk) as input.

A solution with these properties will therefore prevent unnec-
essary offset corrections that produce jitter and will be more
robust to noise by avoiding skew estimation. After describing
and motivating our algorithm, we show how the updating rule
can be implemented in the context of a network environment.

The motivation behind the proposed solution comes from
trying to compensate the problem that arises when one tries
to naively impose properties 1) and 2), i.e. using

uxi (tk) = 0 and usi (tk) = κ1D
x
i (tk). (4)

Figure 5 shows that this type of clock corrections is unsta-
ble; the offset Dx

i (tk) of the slave clock oscillates with an
exponentially increasing amplitude.

The oscillations in Figure 5 arise due to the fundamental
limitations of using offset to update frequency. This is better
seen in the continuous time version of the system (3) with (4),
i.e.

ẋi(t) = risi(t) and ṡi(t) = κ1D
x
i (t)

where ẋ(t) = d
dtx(t). If we consider the offset Dx

i = t−xi(t)
as the system state, then we have

Ḋx
i = 1− risi and D̈x

i = −κ1riDx
i ,

with ẍ(t) = d2

dt2x(t).

This is analogous to a spring mass system without friction.
Thus, it has two purely imaginary eigenvalues that generate



sustained oscillations; see [6], [20] for similar examples.2 One
way to damp these oscillations in the spring-mass case is by
adding friction. This implies adding a term that includes a
frequency mismatch ferri (t) in our system, which is equivalent
to the protocols of Section II-B, and therefore undesired.

However, there are other ways to damp these oscillations
using passivity-based techniques from control theory [21],
[22]. The basic idea is to introduce an additional state yi that
generates the desired friction to damp the oscillations.

Inspired by [21], we consider the exponentially weighted
moving average of the offset

yi(tk+1) = pDx
i (tk) + (1− p)yi(tk). (5)

and update xi(tk) and si(tk) using:

uxi (tk) = 0 and usi (tk) = κ1D
x(tk)− κ2y(tk). (6)

Figure 5 shows how the proposed strategy is able to compen-
sate the oscillations without needing to estimate the value of
ferri (tk). The stability of the algorithm will depend on how
κ1, κ2 and p are chosen. A detailed specification of these
values is given in Section IV-B.

Finally, since we are interested in studying the effect of
timing loops, we move away from the client-server config-
uration implicitly assumed in Section II and allow mutual
or cyclic interactions among nodes. The interactions between
different nodes is described by a graph G(V,E), where V
represents the set of n nodes (i ∈ V ) and E the set of directed
edges ij; ij ∈ E means node i can measure its offset with
respect to j, Dx

ij(tk) = xj(tk)− xi(tk).

Within this context, a natural extension of (5)-(6) is to
substitute Dx

i (tk) with the weighted average of i’s neighbors
offsets. Thus, we propose the following algorithm to update
the clocks in the network.

Algorithm 1 (Alg1): For each computer node i in the network,
perform the following actions:

- Compute the time offsets (Dx
ij(tk)) from i to every neighbor

j at time tk.
- Update the skew si(tk+1) and the moving average yi(tk+1)

at time tk+1 according to:

si(tk+1) =si(tk) + κ1
∑
j∈Ni

αijD
x
ij(tk)− κ2yi(tk) (7a)

yi(tk+1) =p
∑
j∈Ni

αijD
x
ij(tk) + (1− p)yi(tk) (7b)

whereNi represents the set of neighbors of i and the weights
αij are positive.

Using this algorithm, many servers can affect the final
frequency of the system. Thus, when the system synchronizes,
we have

xi(tk) = r∗(tk − t0) + x∗ i ∈ V. (8)

r∗ and x∗ are possibly different from their ideal values 1 and
t0. Their final values depend on the initial condition of all
different clocks as well as the topology, which we assume to
be a connected graph in this paper.

2In the discrete time system the oscillations increase in amplitude since
there is a delay between the time the offset is measured tk and the time the
update is made tk+1 which makes the system unstable.

IV. ANALYSIS

We now analyze the asymptotic behavior of system (7) and
provide a necessary and sufficient condition on the parameter
values that guarantee its convergence to (8). The techniques
used are drawn from the control literature, e.g. [5] and [19],
yet its application in our case is nontrivial.

Notation: We use 0m×n (1m×n) to denote the matrices
of all zeros (ones) within Rm×n and 0n (1n) to denote
the column vectors of appropriate dimensions. In ∈ Rn×n
represents the identity matrix. Given a matrix A ∈ Rn×n with
Jordan normal form A = PJP−1, let nA ≤ n denote the total
number of Jordan blocks Jl with l ∈ I(A) := {1, ..., nA}.
We use µl(A), l ∈ {1, . . . , n} or just µ(A) to denote the
eigenvalues of A, and order them decreasingly |µ1(A)| ≥
· · · ≥ |µn(A)|. Finally, AT is the transpose of A, Aij is the
element of the ith row and jth column of A and ai is the ith
element of the column vector a, i.e. a = [ai]

T .

It is more convenient for the analysis to use a vector form
representation of (7) given by

zk+1 = Azk (9)

where zk := [x(tk)T s(tk)T y(tk)T ]T ∈ R3n,

A :=

[
In τR 0n×n
−κ1L In −κ2In
p(−L) 0n×n (1− p)In

]
∈ R3n×3n,

R ∈ Rn×n is the diagonal matrix with elements ri and L ∈
Rn×n is the Laplacian matrix associated with G(V,E),

Lii = αii :=
∑
j∈Ni

αij and Lij =

{−αij if ij ∈ E,
0 otherwise.

The convergence analysis of this section is done in two
stages. First, we provide necessary and sufficient conditions
for synchronization in terms of the eigenvalues of A (Section
IV-A) and then use Hermite-Biehler Theorem [23] to relate
these eigenvalues with the parameter values that can be
directly used in practice (Section IV-B). All the proof details
are included in the appendix for interested readers.

A. Asymptotic Behavior

We start by studying the asymptotic behavior of (9). That
is, we are interested in finding under what conditions the series
of elements {xi(tk)} converge to (8) as tk goes to infinity.

Consider the Jordan normal form [24] of

A := [ζ1 ... ζ3n] J [η1 ... η3n]
T

where J = blockdiag(Jl)l∈I(A), ζi and ηi are the right and
left generalized eigenvectors of A such that

ζTi ηj =

{
1 if j = i,
0 otherwise.

The crux of the analysis comes from understanding the rela-
tionship between the multiplicity of the eigenvalue µ(A) = 1
and the eigenvalue µ(L) = 0, and their corresponding eigen-
vectors. This is captured in the next two lemmas.



Lemma 1 (Eigenvalues of A and Multiplicity of µ(A) = 1):
A has an eigenvalue µ(A) = 1 with multiplicity 2 if and only
if the graph G(V,E) is connected, κ1 6= κ2 and p > 0.

Furthermore, µl(A) are the roots of

gl(λ) := (λ− 1)2(λ− 1 + p) + [(λ− 1)κ1 +κ2−κ1]νl (10)

where νl = µl(τLR) and satisfies

νn = 0 < |νl| for l ∈ {1, . . . , n− 1}. (11)

Lemma 2 (Jordan Chains of µ(A) = 1 and µ(A) = 1− p):
Under the conditions of Lemma 1 the right and left Jordan
chains, (ζ1, ζ2) and (η2, η1) respectively, associated with
µ(A) = 1 and the eigenvectors ζ3 and η3 associated with
µ(A) = 1− p are given by

[ζ1 ζ2 ζ3] =

 1n 1n − τκ2

p2 1n

0n
(R−11n)

τ
κ2

p R
−11n

0n 0n R−11n

 and (12)

[η1 η2 η3] = γ

 R−1ξ 0n 0n
−τξ ξ 0n

τκ2( 1
p + 1

p2 )ξ −κ2

p ξ ξ

 (13)

where ξ is the unique normalized left eigenvector of µ(L) = 0
(
∑n
i=1 ξi = 1) and γ is the ξi-weighted harmonic mean of ri,

i.e. 1
γ = 1TnR

−1ξ =
∑n
i=1

ξi
ri
.

The proof of Lemmas 1 and 2 can be found in the
Appendices A and B. We now proceed to state our main
convergence result.

Theorem 1 (Convergence): The algorithm (9) achieves
synchronization for any initial conditions if and only if the
graph G(V,E) is connected, κ1 6= κ2, p > 0 and |µl(A)| < 1
whenever µl(A) 6= 1. Moreover, whenever the system syn-
chronizes, we have

x∗ = γ

n∑
i=1

ξi

(
1

ri
xi(t0) + τ

κ2
p2
yi(t0)

)
, and (14a)

r∗ = γ

n∑
i=1

ξi(si(t0)− κ2
p
yi(t0)). (14b)

Theorem 1 provides an analytical tool to understand the
influence of the different nodes of the graph in the final offset
x∗ and frequency r∗. For example, suppose that we know that
node 1 has perfect knowledge of its own frequency (r1) and
the UTC time at t = t0 (x1(t0) = t0), and configure the
network such that node 1 is the unique leader like the top
node in Figures 6a and 6c. It is easy to show that ξ1 = 1 and
ξi = 0 ∀i 6= 1. Then, using (14a)-(14b) and definition of γ
we can see that γ = r1 and

x∗ = x1(t0) + r1τ
κ2
p2
y1(t0) and r∗ = r1s1(t0)− r1κ2

p
y1(t0).

However, since node 1 knows r1 and t0, it can choose
x1(t0) = t0, s1(t0) = 1

r1
and y1(t0) = 0. Thus, we obtain

x∗ = t0 and r∗ = 1 which implies by (8) that every node in the
network will end up with xi(t) = t. In other words, Theorem
1 allows us to understand how the information propagates and
how we can guarantee that every server will converge to the
desired time. Notice that the initial condition used for server
1 is equivalent to assuming that server 1 is a reliable source
of UTC like an atomic clock for instance.

(a)	   (b)	   (c)	  

Fig. 6: Graphs with real eigenvalue Laplacians

B. Necessary and sufficient conditions for synchronization

We now provide necessary and sufficient conditions in
terms of explicit parameter values (κ1, κ2 ,τ and p) for Theo-
rem 1 to hold. We will restrict our attention to graphs that have
Laplacian matrices with real eigenvalues. This includes for
example trees (Figure 6a), symmetric graphs with αij = αji
(Figure 6b) and symmetric graphs with a leader (Figure 6c).

The proof consists on studying the Schur stability of
gl(λ) and has several steps. We first perform a change of
variable that maps the unit circle onto the left half-plane. This
transforms the problem of studying the Schur stability into
a Hurwitz stability problem which is solved using Hermite-
Biehler Theorem.

Theorem 2 (Hurwitz Stability (Hermite-Biehler) [23]):
Given the polynomial P (s) = ans

n + ... + a0, let P r(ω)
and P i(ω) be the real and imaginary part of P (jω),
i.e. P (jω) = P r(ω) + jP i(ω). Then P (s) is a Hurwitz
polynomial if and only if

1) anan−1 > 0 and 2)

2) The zeros of P r(ω) and P i(ω) are all simple and real
and interlace as ω runs from −∞ to +∞.

We now determine the proper parameter values that guar-
antee synchronization.

Theorem 3 (Parameter Values for Synchronization):
Given a connected graph G(V,E) such that the corresponding
Laplacian matrix L has real eigenvalues. The system (9)
achieves synchronization if and only if

(i) |1− p| < 1 or equivalently 2 > p > 0

(ii) 2κ1

3p > κ1 − κ2 > 0 and (iii) τ < p(κ2−p(κ1−κ2))
µmax(κ1−p(κ1−κ2))2

where µmax is the largest eigenvalue of LR.

Even though µmax depends on ri which is in general
unknown, it is easy to show that µl(LR) ≤ r̂maxµl(L) where
r̂max is an upper bound of the maximum rate deviation ri.
Furthermore, using Greshgorin’s circle theorem, it is easy to
show that µmax(L) ≤ 2αmax := 2 maxi αii. Therefore, if we
set

τ <
p(κ2 − δκp)

2αmaxr̂max(κ1 − δκp)2
(15)

convergence is guaranteed for every connected graph with
real eigenvalues.

V. EXPERIMENTS

To test our solution and analysis, we implement an asyn-
chronous version of Algorithm 1 (Alg1) in C using the IBM



Fig. 7: Testbed of IBM BladeCenter blade servers

CCT solution as our code base. Every node perform its own
measurements and updates every τ seconds using (7), but not
necessarily at the same instants tk.

Our program reads the TSC counter directly using the
rdtsc assembly instruction to minimize reading latencies
and maintains a virtual clock that can be directly updated.
The list of neighbors is read from a configuration file and
whenever there is no neighbor, the program follows the local
Linux clock. Finally, offset measurements are taken using an
improved ping pong mechanism proposed in [11].

We run our skewless protocol in a cluster of IBM Blade-
Center LS21 servers with two AMD Opteron processors of
2.40GHz, and 16GB of memory. As shown in Figure 7,
the servers serv1-serv10 are used to run the protocol. The
offset measurements are taken through a Gigabit Ethernet
switch. Server serv0 is used as a reference node and gathers
time information from the different nodes using a Cisco 4x
InfiniBand Switch that supports up to 10Gbps between any
two ports and up to 240Gbps of aggregate bandwidth. This
minimizes the error induced by the data collecting process.

We use this testbed to validate the analysis in Section
IV. First, we illustrate the effect of different parameters and
analyze the effect of the network configuration on convergence
(Experiment 1). Then we present a series of configurations
that demonstrate how connectivity between clients is useful
in reducing the jitter of a noisy clock source (Experiment
2). And finally, we compare the performance of our protocol
with respect to NTP version 4 (Experiment 3) and IBM CCT
(Experiment 4).

We will use several performance metrics to evaluate Alg1.
For instance, the mean relative deviation from the leader
which is defined as the root mean square of the node’s offset
with respect to the leader, i.e.

√
Sn with

Sn =
1

n− 1

n∑
i=2

〈
(xi − x1)2

〉
, (16)

where < · > amounts to the sample average. We will also use
the 99% Confidence Interval CI99 and the maximum offset
(CI100) as metrics of accuracy. For example, if CI99 = 10µs,
then 99% of the offset samples will be within 10µs of the
leader.

Unless explicitly stated, the default parameter values are

p = 0.99, κ1 = 1.1, κ2 = 1.0 and αij =
c

|Ni|
. (17)

The scalar c is a commit or gain factor that will allow us to
compensate the effect of τ . Notice that by definition of αij ,
αii = c for every node that is not the leader.

Moreover, these values immediately satisfy (i) and (ii) of
Theorem 3 since 1−p = 0.01 and 2κ1

3p = 0.7407 > κ1−κ2 =
0.1. The remaining condition can be satisfied by modifying τ
or equivalently c. Here, we choose to fix c = 0.7 which makes
condition (iii)

τ <
890.1

µmax
ms.

For fixed polling interval τ , the stability of the system depends
on the value of µmax, which is determined by the underlying
network topology and the values of αij .
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Fig. 8: Effect of topology on convergence: (a) Client-server
configuration; (b) Two clients connected to server and mutu-
ally connected.

Experiment 1 (Convergence): We first consider the client
server configuration described in Figure 8a with a time step
τ = 1s. In this configuration µmax ≈ c = 0.7 and therefore
condition (iii) becomes τ < 1.2717s. Figure 9a shows the
offset between serv1 (the leader) and serv2 (the client) in
microseconds. There we can see how serv2 gradually updates
s2(tk) until the offset becomes insignificant.
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(a) Client server configuration with
τ = 1s. The client converges and the
algorithm is stable.
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(b) Two clients mutually connected
with τ = 1s. The algorithm becomes
unstable.

Fig. 9: Loss of stability by change in the network topology

Figure 9a tends to suggest that the set of parameters given
by (17) and τ = 1s are suitable for deployment on the servers.
This is in fact true provided that network is a directed tree as
in Figure 6a. The intuition behind this fact is that in a tree,
each client connects only to one server. Thus, those connected
to the leader will synchronize first and then subsequent layers
will follow.

However, once loops appear in the network, there is no
longer a clear dependency since two given nodes can mutually
get information from each other. This type of dependency
might make the algorithm unstable. Figure 9b shows an
experiment with the same configuration as Figure 9a in which
serv2 synchronizes with serv1 until a third server (serv3)
appears after 60s. At that moment the system is reconfigured
to have the topology of Figure 8b introducing a timing loop



between serv2 and serv3. This timing loop makes the system
unstable.

The instability arises since after serv3 starts, the new
topology has µmax ≈ 1.5c = 1.05. Thus, the time step
condition (iii) becomes τ < 847.8ms which is no longer
satisfied by τ = 1s.

This may be solved for the new topology (Figure 8b) by
using any τ smaller than 847.8ms. However, if we want a set
of parameters that is independent of the topology, we can use
(15) and notice that αmax = c and r̂max ≈ 1. We choose

τ = 500ms <
890.2

2αmax
ms =

890.2

2c
ms = 635.9ms.

Figure 10 shows how now serv2 and serv3 can synchronize
with serv1 after introducing this change.
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Fig. 10: Two clients mutually connected with τ = 500ms

Experiment 2 (Timing Loops Effect): We now show how
timing loops can be used to collectively outperform individual
clients when the time source is noisy.

We run Alg1 on 10 servers (serv1 through serv10). The
connection setup is described in Figure 11. Every node is
directly connected unidirectionally to the leader (serv1) and
bidirectionally to 2K additional neighbors.

K=0	   K=2	  

Fig. 11: Leader topologies with 2K neighbors connection.
Connections to the leader (serv1) are unidirectional while
the connections among clients (serv2 trhough serv10) are
bidirectional

When K = 0 then the network reduces to a star topology
and when K = 4 the servers serv2 through serv10 form a
complete graph.

The dashed arrows in Figure 11 show the connections
where jitter was introduced. To emulate a link with jitter
we added random noise η with values taken uniformly from
{0, 1, ..., Jittermax} on both direction of the communication,

η ∈ {0, 1, ..., Jittermax}ms. (18)

Notice that the arrow only shows a dependency rela-
tionship, the ping pong mechanism sends packets in both

direction of the physical communication. We used a value
of Jittermax = 10ms. Since the error was introduced in both
directions of the ping pong, this is equivalent to a standard
deviation of 6.05ms.
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(a) Star topology (K = 0)
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(b) Complete subgraph (K = 4)

Fig. 12: Offset of the nine servers connected to a noisy clock
source

Figure 12 illustrates the relative offset between the two
extreme cases; The star topology (K = 0) is shown in Figure
12a, and the complete subgraph (K = 4) is shown in Figure
12b.

The worst case offset for K = 0 is CI100 = 5.1ms
which is on the order of the standard deviation of the jitter.
However, when K = 4 we obtain a worst case offset of
CI100 = 690.8µs, an order of magnitude improvement.
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Fig. 13: Effect of the client’s communication topology on
the mean relative deviation. As the connectivity increases (K
increases) the mean relative deviation is reduced by factor of
6.26, i.e. a noise reduction of approx. 8dB.

The change on the mean relative deviation
√
Sn as the

connectivity among clients increases from isolated nodes
(K = 0) to a complete subgraph (K = 4) is studied in Figure
13. The results presented show that even without any offset
filtering mechanism the network itself is able to perform a
distributed filtering that achieves an improvement of up to a
factor of 6.26 or equivalently a noise reduction of almost 8dB.

Experiment 3 (Comparison with NTPv4): We now perform
a thorough comparison between our protocol (Alg1) and
NTPv4. We will use the one hop configuration of Figure 8b
but without the bidirectional link. Here, server serv1 is set as
NTP server and as leader of Alg1, server serv2 has a client
running NTPv4 and server serv3 a client running our protocol.

In order to make a fair comparison, we need both al-
gorithms to use the same polling interval. Thus, we fix
τ = 16sec. This can be done for NTP by setting the parameters
minpoll and maxpoll to 4 (24 = 16secs). The remainder
parameter values for Alg1 are given by

p = 1.98, κ1 = 1.388 and κ2 = 1.374. (19)



Figure 14a shows the time differences between the clients
running NTPv4 and Alg1 (serv2 and serv3) , and the leader
(serv1) over a period of 30 hours. It can be seen that Alg1
is able to track serv1’s clock keeping an offset smaller than
10µs for most of the time while NTPv4 incurs in larger offsets
during the same period of time. This difference is produced
by the fact that Alg1 is able to react more rapidly to frequency
changes while NTPv4 incurs in more offset corrections that
generate larger jitter.
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(a) Offset values of NTPv4 and Alg1
for a period of 30 hours.
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Fig. 14: Performance evaluation between our solution (Alg1)
and NTPv4

A more detailed and comprehensive analysis is presented
in Figure 14b where we plot the Cumulative Distribution
Function (CDF) of the offset samples. That is, the fraction
of samples whose time offset is smaller than a specific
value. Using Figure 14b we compute the corresponding 99%
confidence intervals (CI99)

Alg1 achieves a performance of
√
Sn = 3.1µs, CI99 =

9.5µs and a maximum offset of CI100 = 15.9µs, while NTPv4
obtains

√
Sn = 8.1µs, CI99 = 21.8µs and a maximum offset

of CI100 = 28.0µs. Thus, not only Alg1 achieves a reduction
of
√
Sn by a factor of 2.6 (−4.2dB) with respect to NTPv4,

but it also obtains smaller confidence intervals and maximum
offset values.
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Fig. 15: Offset values of NTPv4 and Alg1 after a 25ms offset
introduced in serv1.

Finally, we investigate the speed of convergence. Starting
from both clients synchronized to server serv1, we introduce
a 25ms offset. Figure 15 shows how Alg1 is able to converge
to a 20µs range within one hour while NTPv4 needs 4.5hours
to achieve the same synchronization precision.

Experiment 4 (Comparison with IBM CCT): We now
proceed to compare the performance of Alg1 with respect to
IBM CCT. Notice that unlike IBM CCT, our solution does
not perform any previous filtering of the offset samples, the
filtering is performed instead by calibrating the parameters
which mostly depend on the polling interval τ chosen. Here
we use c = 0.70, τ = 250ms, κ1 = 0.1385, κ2 = 0.1363 and
p = 0.62.

In Figure 16a we present the mean relative deviation√
Sn for two clients connected directly to the leader as

the jitter is increased from Jittermax = 0µs (no jitter) to
Jittermax = 160µs with a granularity of 1µs. The worst case
offset is shown in Figure 16b. Each data point is computed
using a sample run of 250 seconds.

Our algorithm consistently outperforms IBM CCT in terms
of both

√
Sn and worst case offset. The performance im-

provement is due to two reasons. Firstly, the noise filter used
by the IBM CCT algorithm is tailored for noise distributions
that are mostly concentrated close to zero with sporadic large
errors. However, it does not work properly in cases where the
distribution is more homogeneous as in this case. Secondly,
by choosing δκ = κ1−κ2 = 0.002� 1 the protocol becomes
very robust to offset errors.
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Fig. 16: Performance evaluation between our solution (Alg1)
and IBM CCT

VI. CONCLUSION

This paper presents a clock synchronization protocol that
is able to synchronize networked nodes without explicit es-
timation of the clock skews and steep corrections on the
time. Unlike current standards, our protocol is guaranteed
to converge even in the presence of timing loops which
allows different clients to share timing information and even
collectively outperform individual clients. We implemented
our solution on a cluster of IBM BladeCenter servers and em-
pirically verified our predictions and our protocol’s supremacy
over several existing solutions.
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APPENDIX

A. Proof of Lemma 1

Proof: We first compute the characteristic polynomial

det(λI3n −A) =

∣∣∣∣∣ (λ− 1)In −τR 0n×n
κ1L (λ− 1)In κ2In
pL 0 (λ− 1 + p)In

∣∣∣∣∣
= (λ− 1)n

∣∣∣∣ (λ− 1)In + τκ1

λ−1LR κ2In
τp
λ−1LR (λ− 1 + p)In

∣∣∣∣
= det

(
(λ− 1)2(λ− 1 + p)In + [(λ− 1)κ1

+(κ2 − κ1)]τLR) =

n∏
l=1

gl(λ),

where gl(λ) is as defined in (10) and we have iteratively
use the determinant property of block matrices det(A) =

det(A11) det(A\A11) where A =

[
A11 A12

A21 A22

]
and

A\A11 = A22 − A21A
−1
11 A12 is the Schur complement of

A11 [24].

Thus, λ = 1 is a double root of the characteristic polyno-
mial if and only if κ1 6= κ2, p > 0 and τLR has a simple zero
eigenvalue, i.e. (11). Now, since R is nonsingular (11) must
hold for the eigenvalues of L as well, which is in fact true if
and only if the directed graph G(V,E) is connected [19].

B. Proof of Lemma 2

Proof: We start by computing the right Jordan chain. By
definition of ζ1, (A− I)ζ1 = 0n. Thus, if ζ1 = [xT sT yT ]T ,
then the following system of equations must be satisfied

τRs = 0n (a), − κ1Lx− κ2y = 0n (b) and
−pLx− py = 0n (c). (20)

Equation (20a) implies s = 0. Now, since p > 0, (20c)
implies Lx = −y, which when substituted in (20b) gives
(κ2 − κ1)y = 0n. Thus, since κ1 6= κ2, y = 0n and
x ∈ ker(L). By choosing x = α11n (for some α1 6= 0)
we obtain ζ1 = α1

[
1Tn 0Tn 0Tn

]T
.

Notice that the computation also shows that ζ1 is the
unique eigenvector of µ(A) = 1 which implies that there
is only one Jordan block of size 2. The second member of
the chain, ζ2, and ζ3 can be computed similarly by solving
(A− In)ζ2 = ζ1 and (A− (1− p)In)ζ3 = 0n. This gives

ζ2 =

 α21n
α1

τ R
−11n
0n

 and ζ3 = α3

 − τκ2

p2 1n
κ2

p R
−11n

R−11n

 .
In computing ζ3, we obtain Lx = 0 and Rx = − τps = −κ2τ

p2 y.
ζ3 follows by taking y = α3R

−11n.

The vectors η1, η2 and η3 can be solved in
the same way using ηT2 (A − I) = 0Tn , ηT1 (A −
I) = ηT2 and ηT3 (A − (1 − p)I) = 0Tn . This

gives η1 =
[
β2

τ R
−1ξT β1ξ

T (−κ2

p β1 + κ2

p2 β2)ξT
]T

, η2 =

β2

[
0Tn ξ

T κ2

p ξ
T
]T

and η3 = β3
[
0Tn 0Tn ξ

T
]T
. We set

α1 = α2 = α3 = 1; this can be done WLOG provided we still
satisfy ηTl ζl = 1 and ηTl ζh = 0 for l 6= h. Finally, ηT1 ζ1 = 1
givesβ2 = γτ , ηT3 ζ3 = 1 gives β3 = γ and ηT1 ζ2 = 0 gives
β1 = −β2 = −γτ .

C. Proof of Theorem 1

Proof: We first notice that whenever x(tk) approaches
(8) then

lim
h→∞

x(th)− r∗1n(th − t0) = x∗1n (21)
Sufficiency: Since we are under the assumptions of Lem-

mas 1 and 2 we know that µ(A) = 1 has multiplicity 2 and
a Jordan chain of size 2. Thus, the Jordan normal form of A
is

A = [ζ1...ζ3n]


1 1 0
0 1 0
0 0 1− p

03×3(n−1)

03(n−1)×3 Ĵ


 η1

T

...
η3n

T


(22)



where Ĵ has eigenvalues with spectral radius ρ(Ĵ) :=
maxl |µl(Ĵ)| < 1. Thus, it follows that

lim
h→∞

Ah − ζ1ηT1 − (hζ1 + ζ2)ηT2 = lim
h→∞

[ζ1...ζ3n] (23) 02×2 02×1
01×2 (1− p)h 02×(3n−2)

0(3n−2)×2 Ĵh


 η1

T

...
η3n

T

 = 03n

where the last equality follows since (1 − p)h −−−−→
h→∞

0 and∥∥∥Ĵh∥∥∥
ε
≤
∥∥∥Ĵ∥∥∥h

ε
≤ (ρ + ε)h −−−−→

h→∞
0, where the norm ‖·‖ε

is chosen such that ‖A‖ε = ρ(A) + ε [24, p. 297, Lemma
5.6.10] and ε is such ρ(Ĵ) + ε < 1.

Right multiplying (23) with a given initial condition z0 =
[xT0 sT0 yT0 ]T and using (12) and (13) gives

lim
k→∞

xk − (tk − t0)γ1nξ
T (s0 −

κ2
p
y0) =

= γ1nξ
T (R−1x0 + τ

κ2
p2
y0). (24)

Thus, equation (14) follows from identifying (24) and (21).

Necessity: The algorithm achieves synchronization when-
ever (21) holds. Then, it follows from (9) and (21) that
asymptotically the system behaves according to

zk =

[
xk
sk
yk

]
=

 x∗1n
r∗R−11n

0n

+ k

[
τr∗1n
0n
0n

]
= (τr∗ζ2 + (x∗ − τr∗)ζ1) + kr∗τζ2.

Thus, since P is invertible ζl are linearly independent. There-
fore, if the system synchronizes for arbitrary initial condition,
then it must be the case that the effect of the remaining modes
µl(Γ) vanishes, which can only happen if for every µl(Γ) 6= 1,
|µl(Γ)| < 1 and the multiplicity of µl(Γ) = 1 is two. Now
suppose that either κ1 = κ2 or p = 0. Then by Lemma 1, the
multiplicity of µl(Γ) = 1 is not two which is a contradiction.
Thus, we must have κ1 6= κ2 and p > 0 whenever the system
synchronizes for arbitrary initial condition.

D. Proof of Theorem 3

Proof: We will show that when G(V,E) is connected
with µ(L) ∈ R, then (i)-(iii) are equivalent to the conditions
of Theorem 1.

Since, G(V,E) is connected and (i)-(ii) satisfies p > 0 and
κ1 6= κ2, the conditions of Lemma 1 are satisfied. Therefore
the multiplicity of µ(A) = 1 is two and by (11) these are the
roots of gn(λ) = (λ− 1)2(λ− 1 + p), which corresponds to
the case νn = 0.

Thus, to satisfy Theorem 1 we need to show that the
remaining eigenvalues are strictly in the unit circle. This is
true for the remaining root of gn(λ) iff (i).

For the remaining gl(λ), this implies that are Schur poly-
nomials. Thus, we will show that gl(λ) is a Schur polynomial
if and only if (i)-(iii) hold. We drop the subindex l for the rest
of the proof.

We first transform the Schur stability problem into a
Hurwitz stability problem. Consider the change of variable
λ = s+1

s−1 . Then |λ| < 1 if and only if R[s] < 0.

Now, since ν > 0 by (11), let

P (s) =
(s− 1)3

δκpν
g

(
s+ 1

s− 1

)
= s3 +

(
2κ1
δκp
− 3

)
s2

+

(
4

δκν
+ 3− 4κ1

δκp

)
s+

4(2− p)
δκpν

+
2κ1
δκp
− 1

where δκ = κ1 − κ2.

We will apply Hermite-Biehler Theorem to P (s), but first
let us express what 1) and 2) of Theorem 2 mean here.

Condition 1) becomes

2κ1
δκp
− 3 > 0. (25)

Now let P r(ω) and P i(ω) be as in Theorem 2, i.e. let

P r(ω) =−
(

2κ1
δκp
− 3

)
ω2 +

4(2− p)
δκpν

+
2κ1
δκp
− 1

P i(ω) =− ω3 +

(
4

δκν
+ 3− 4κ1

δκp

)
ω

The roots of P r(ω) and P i(ω) are given by ω0 = ±
√
ωr0

and ω0 ∈ {0, ±
√
ωi0} respectively, where

ωr0 :=

4(2−p)
δκpν + 2κ1

δκp − 1
2κ1

δκp − 3
and ωi0 :=

4

δκν
+ 3− 4κ1

δκp
(26)

Since the roots P r(ω) and P i(ω) must be real, we must
have ωr0 > 0 and ωi0 > 0. Therefore, by monotonicity of the
square root, the interlacing condition 2) is equivalent to

0 < ωr0 < ωi0. (27)

Thus we will show: (i)-(iii) hold ⇐⇒ (25) and (27) hold.

It is straightforward to see that using (i) and (ii) we can get
(25). On the other hand, ωio > 0 from (27) together with (25)
gives 0 < 4

δκν + 3 − 4κ1

δκp <
4
δκν , which implies that δκ > 0,

and therefore (ii) follows.

Now using (25) and the definition of ωr0 in (26), ωr0 > 0

becomes 4(2−p)
δκpν + 2κ1

δκp − 1 > 0 which always holds under (i)
and (ii) since the first term is always positive and 2κ1

δκp − 1 >
2κ1

δκp − 3 > 0 by (25).

Using (26), ωr0 < ωi0 is equivalent to

ν <
p(κ2 − δκp)
(κ1 − δκp)2

. (28)

Finally, νl = µl(τLR) = τµl(LR). Thus, since (28) should
hold ∀l ∈ {1, ..., n− 1}, then

τ < min
l

p(κ2 − δκp)
µl(LR)(κ1 − δκp)2

=
p(κ2 − δκp)

µmax(κ1 − δκp)2
which is exactly (iii).


