Distributed Clock Synchronization: Joint Frequency and Phase Consensus

Enrique Mallada, *Student Member, IEEE*, and Ao Tang, *Member, IEEE* School of ECE, Cornell University, Ithaca, NY 14853

Abstract—Distributed synchronization has gradually gained importance over the last two decades. The ad-hoc nature of new applications has increased the need for robust and scalable distributed solutions that are capable of generating high precision timing information. However, current solutions usually produce phase errors when the frequencies are heterogeneous. This paper proposes a distributed synchronization procedure that can achieve consensus in both frequency and phase. The algorithm uses only local information and is robust to frequency heterogeneity and network topology. A sufficient condition for global convergence is shown by leveraging recent results on coupled oscillators. We further characterize an invariant constant of the algorithm that relates the limiting frequency ω^* with the harmonic mean of the clocks' natural frequencies. Simulations are provided to illustrate and verify these properties.

I. INTRODUCTION

The need of a common time reference among network nodes has always been an important issue in communication networks. Historically, it was primarily used to allow coherent data communication among telecommunication nodes and coordination for medium access control in cellular networks. These solutions usually require a centralized clock distribution architecture and depend on highly stable clocks with relative frequency offsets of less than 10^{-10} [22].

Nowadays, synchronization is used in a vast diversity of applications. Examples of these include data fusion of time sensitive measurements in distributed estimation or tracking [7], energy efficient MAC protocols with sleep periods [23], and collaborative transmission using space-time coding [6].

Unfortunately, traditional synchronization architectures have become increasingly unsuitable for these applications due to several reasons. First, the synchronization of the entire network relies on a few number of nodes. This implies the whole system is fragile to the failure of those nodes. Second, in order to achieve high precision, expensive clocks are usually needed. And finally, the centralized nature of the solution makes it not scalable since errors will accumate when the number of clocks grows.

Essentially, there are three requisites that an ideal synchronization protocol should satisfy. It should be distributed and independent of network topology, i.e., each node only uses neighbors' timing information to adjust it own time. It should be robust to high variance in clock's frequency distribution, and it should minimize the phase error as much as possible.

Several synchronization algorithms have been proposed along this line of thoughts, see e.g. [16], [18] and references therein. One possible solution is to use discrete time PLLs (Phase Lock Loop). The resulting algorithms can be shown to globally converge but they are either sensitive to heterogenous frequencies [21], [17], or can only be analyzed for the two node scenario [13]. There has also been studies on frequency and phase estimation with noisy measurements. However, the techniques involved usually only cover large number of nodes asymptotics [19], [1] while guaranteeing O(1) phase errors.

This paper builds upon related work on coupled oscillator, e.g., [4], [10], [9], [11]. These systems usually need to introduce phase mismatch to compensate the frequency differences. We solve this problem by adding a new integrator in the loop together with a linear consensus term. Moreover, we also provide a global convergence result under certain conditions on the topology, i.e. connectivity, and coupling.

The rest of the paper is organized as follows. Section II introduces the model. In Section III, we use an invariant property of the system to characterize the final achieved frequency ω^* in term of initial conditions and system parameters. Global convergence is established in Section IV. Simulations are used to illustrate our findings in Section V and conclusions are presented in Section VI.

II. MOTIVATION AND MODEL

A. Modeling Clocks

We consider a network of N nodes. The connectivity of the network is described by a graph G = (V, E) where two nodes, $i, j \in V$, are allowed to interchange timing information if and only if there is some edge $ij \in E$. This exchange of information can be done by explicit transmission or implicit estimation, and it is assumed to have negligible delay.

Each node contains a clock of natural frequency $\frac{1}{T_i}$ which is assumed to be implemented by a continuous counter $n_i \in [0, 1]$ that increases its count according to

$$\dot{n}_i = \frac{1}{T_i} - \delta(n_i - 1), \quad \forall i \in V.$$
(1)

The Dirac's delta function δ forces the counter to restart once it reaches the value 1. Notice T_i is also the total time needed for n_i to go through the interval [0, 1]

The main goal of this paper is to find a control strategy that bring all the clocks to a time consensus using only neighbors' information, i.e.,

$$n_i(t) \to \frac{1}{T*}t + n^* \pmod{1}, \quad \forall i \in V,$$
 (2)

as $t \to +\infty$, with T^* being the final common period.

Although this model might seem to pose some analytical challenges due to the discontinuous trajectories that (1) generates, the periodic nature of the trajectories admits a transformation from counters n_i to phases ϕ_i in the unit circle \mathbb{S}^1 such that (1) becomes

$$\phi_i = \omega_i, \quad \forall i \in V, \tag{3}$$

with $\omega_i = \frac{2\pi}{T_i}$ and whose corresponding trajectories are smooth.

Remark 1: Equation (1) is a clock implementation that is commonly used in computer networks. There are other possible implementations that also have a phase model representation, e.g. voltage controlled oscillators generating sinusoidal signals. The results of this paper are applicable to such systems if a suitable phase and frequency estimation is feasible.

This transformation also provides an interesting interpretation for the time consensus problem. Since the state space of the phase model is the *N*-torus \mathbb{T}^N , the time consensus problem is equivalent to the *Second Order Ntorus Consensus* which seeks convergence in both phase and frequency, i.e.,

$$|\phi_j(t) - \phi_i(t)|| \to 0$$
 and $\left\|\dot{\phi}_j(t) - \dot{\phi}_i(t)\right\| \to 0,$

for all $i, j \in V$ as $t \to +\infty$.

The system is said to reach *frequency consensus* if the trajectories converge to limit cycles of the form

$$\phi_i(t) = \omega^* t + \phi_i^* \quad \forall i \in V, \tag{4}$$

where ω^* denotes the synchronizing frequency. Furthermore, the system achieves *phase consensus* if $\phi_i^* = \overline{\phi}, \forall i \in V$.

To illustrate the challenge of this problem, we first consider a standard model of coupled oscillators

$$\dot{\phi}_i = \omega_i + \sum_{j \in \mathcal{N}_i} f_{ij}(\phi_j - \phi_i) \tag{5}$$

in which each node *i* corrects its own frequency by an additive term depending on the phase difference with its neighbors $j \in \mathcal{N}_i$; \mathcal{N}_i denotes the set of nodes that are *i*'s neighbors and the function f_{ij} is usually odd. Even when the frequencies are homogenous among the nodes, (5) presents several limit cycles of the form of (4). Their existence and stability depend on several factors such as topology and coupling [10], and most of the existing works are constrained to study either local stability or fixed topologies [10], [12].

Only recently, global convergence results have been obtained, first by using the aid of an artificial state in [14] and later by adding constraints on f_{ij} [9]. In spite of these global convergence results, all of them assume that every oscillator has the same natural frequency ω_i .

Moreover, once the frequencies are different, phase consensus breaks. This is mainly due to the fact that in order for

$$\omega^* = \omega_i + \sum_{j \in \mathcal{N}_i} f_{ij}(\phi_j^* - \phi_i^*), \quad \forall i \in V,$$

to hold, the system needs to compensate the frequency mismatch by introducing a certain phase difference.

B. Combining Synchronization of Coupled Oscillators with Consensus Algorithms

We now show how the limitation of coupled oscillators in achieving phase synchronization when the frequencies are different can be overcome by combining ideas from coupled oscillators and linear consensus literature. In stead of additively changing the frequency as in Equation (5), we propose to control the clock speed using a multiplicative scalar γ_i , i.e.

$$\phi_i = \omega_i \gamma_i, \quad \forall i \in V.$$
(6)

This can be done, for example, in our clock implementation by multiplying the counter value n_i times γ_i . In this way, only when $\gamma_i = 1$, the *i*th clock will run at its own natural frequency.

The problem now reduces to how to define a control law for γ_i that can guarantee phase and frequency synchronization at the same time. Since our aim is to obtain consensus in both frequency, $\gamma_i \omega_i$, and phase, ϕ_i , then the adaptation $\dot{\gamma}_i$ should accept such desired solution.

For instance, a first try to solve this problem might be to use

$$\dot{\gamma}_i = \sum_{j \in \mathcal{N}_i} f_{ij}(\phi_j - \phi_i), \quad \forall i \in V,$$

which amounts to adding an integrator to the dynamics. Formally, we can express the dynamics in vector from as,

$$\dot{\gamma} = -BF(B^T\phi) \tag{7a}$$

$$\dot{\phi} = \Omega \gamma$$
 (7b)

where $\Omega = \text{diag}[\omega_i]$, B is the oriented incidence matrix of G [2], i.e.

$$B(k,ij) := \begin{cases} 1 & \text{if } k = j, \\ -1 & \text{if } k = i, \\ 0 & \text{otherwise.} \end{cases}$$

and $F(\cdot)$ is the column vector valued function

$$F(y) := [f_{ij}(y_{ij})]_{ij \in E}.$$

What it is interesting of (7) is that even though the frequencies ω_i might be different, the system still allows phase and frequency consensus. In fact, by setting

$$\gamma_i = \frac{\omega^*}{\omega_i}, \text{ and } \phi_i = \bar{\phi},$$

and substituting in (7) we obtained a synchronized solution in frequency and phase, i.e.

$$\phi(t) = \omega^* t \mathbf{1}_N + \bar{\phi} \mathbf{1}_N, \forall i \in V,$$
(8)

where $\mathbf{1}_N \in \mathbb{R}^N$ is the column vector of all ones.

However, a close inspection of the jacobian matrix, unveils an additional oscillatory behavior that this system exhibits. The Jacobian of (7) is,

$$J_{\phi^*} = \left[\begin{array}{cc} 0 & -L(w(\bar{\phi})) \\ \Omega & 0 \end{array} \right],$$

with $(w(\phi))_{ij} = f'_{ij}(\phi_j - \phi_i)$ and $L(w) = B \text{diag}[w]B^T$ is the *w*-weighted Laplacian [2]. Since this jacobian is constant along the limit cycles (4), it can be used to study their stability.

Although analytical computation of the eigenvalues of J_{ϕ^*} might not be easy, it is still possible to learn some structure by using results from matrix polynomial theory [20]. For example, every eigenvalue of J_{ϕ^*} can be expressed as,

$$\lambda=\pm i\sqrt{\frac{v^TL(\phi^*)v}{v^T\Omega v}}$$

for some eigenvector, $v \neq 0$, of the matrix polynomial

$$M(\lambda) = \lambda^2 \Omega + L(\phi^*).$$

Thus, oscillatory behavior is expected around the orbits of (7). Figure 1 shows that in fact these oscillations are sustained not only locally. We simulated a fully connected network of 3 nodes with $\omega_i = 1$, $\forall i \in V$. The initial condition for the states are

$$\phi = (0, \frac{\pi}{2}, -\frac{\pi}{2})^T$$
, and $\gamma = (1, 1, 1)^T$.

Therefore, although (7) allows the type of solutions we

Fig. 1. Nonlinear oscillations of (7): Phases are plotted relative to ϕ_1

are seeking, the additional integration introduced does not guarantee its convergence.

A standard technique to overcome this oscillatory nonlinear behavior [15], [8] is to introduce a damping term in (7a) such that the eigenvalues of J_{ϕ^*} are moved away from the imaginary axis. Suppose we add a damping term of the form $-\nu\dot{\phi}$ where ν is some positive scalar. Equation (7b) now becomes

$$\dot{\gamma} = -BF(B^T\phi) - \nu\Omega\gamma, \tag{9}$$

and the eigenvalues are shifted towards the left half-plane

$$\lambda = \frac{-\nu v^T \Omega v \pm \sqrt{\nu^2 (v^T \Omega v)^2 - 4(v^T \Omega v)(v^T L(\phi^*)v)}}{2v^T \Omega v}$$

Figure 2 shows how now the trajectories with the same initial conditions as before do not oscillate anymore. Unfortunately, as Figure 2 suggests, (9) can only admit limit cycles with $\omega^* = 0$ which is unsuitable for our application.

The problem is that the term $-\nu\Omega\gamma$ in $\dot{\gamma}$ is behaving like the system

$$\dot{x} = -\nu x$$

which clearly has a unique equilibrium $\forall \nu > 0$ in x = 0. Thus, we need a different solution. It is well known from

Fig. 2. Adding a positive definite damping

linear consensus literature that for any given vector (a_{ij}) with $a_{ij} \ge 0$ the system

$$\dot{x} = -L(a)x$$

with initial condition x^0 always converge to a solution $x_i = \frac{1}{n} \sum_{i=1}^{n} x_i^0 \ \forall i \in V$ provided that L(a) induces a connected graph $G_a = (V, E_a)$, with $E_a = \{ij | a_{ij} > 0\}$.

Therefore, it seems promising to study the system

ġ

$$\dot{\gamma} = -BF(B^T\phi) - L(a)\Omega\gamma \tag{10a}$$

$$\rho = \Omega \gamma$$
 (10b)

In the Euclidean counterpart of this problem it is possible to guarantee convergence when only two nodes share speed information [3]. In our case, we need to assume the undirected graph G_a is connected.

One interpretation of the two terms of (10a) is the following. The term $-BF(B^T\phi)$ seeks phase consensus, although it can not achieve it itself as shown. And the term $-L(a)\Omega\gamma$ seeks frequency consensus and in fact it can achieve, but it fails to guarantee phase consensus. Thus, the term -L(a) acts as a damping term for the phase consensus algorithm, or equivalently $-BF(B^T\phi)$ acts as a correction term of the frequency consensus algorithm.

III. SYNCHRONIZATION FREQUENCY

In this section we compute the value ω^* achieved by (10). We start by providing a general characterization for ω^* .

Proposition 1: Given initial conditions (ϕ^0, γ^0) . If the system (10) converges to an orbit like (4), then the achieved frequency can be computed using

$$\omega^* = \frac{\sum_{i=1}^{N} \gamma_i^0}{\sum_{i=1}^{N} \frac{1}{\omega_i}}.$$
 (11)

Proof: A well know property of B is that $\ker[B^T] = \operatorname{span}[1]$ whenever G is connected. Using this property, it is straightforward to show that $\mathbf{1}^T \dot{\gamma} \equiv 0$ since G and G_a are connected. Then, given initial condition γ^0 we have

$$\sum_{i=1}^{N} \gamma_i(t) = \mathbf{1}^T \gamma(t) = \mathbf{1}^T (\gamma^0 + \int_{s=0}^t \dot{\gamma}(s) ds)$$
$$= \mathbf{1}^T \gamma^0 + 0 = \mathbf{1}^T \gamma^0.$$

Thus, the quantity $\sum_{i=1}^{N} \gamma_i(t) = \sum_{i=1}^{N} \gamma_i^0$ is an invariant of the system.

Suppose now that the system converges to a limit cycle, or equivalently that $\gamma_i(t) \to \frac{\omega^*}{\omega_i}$. Then it follows

$$\sum_{i=1}^N \gamma_i^0 = \sum_{i=1}^N \gamma_i(t) \rightarrow \sum_{i=1}^N \frac{\omega^*}{\omega_i} = \omega^* \sum_{i=1}^N \frac{1}{\omega_i}.$$

Solving for ω^* gives the desired result.

Assuming that every clock starts with initial frequency equal to its own natural frequency, i.e. $\gamma_i = 1$. Then, ω^* will be the harmonic mean, i.e.,

$$\frac{1}{\omega^*} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\omega_i}.$$
 (12)

The reason why the system does not achieve the average of $\{\omega_i\}$ is that the system is in fact averaging a different quantity. This can be seen by substituting ω_i with $\frac{2\pi}{T_i}$ in (12) which gives,

$$T^* = \frac{2\pi}{\omega^*} = \frac{1}{N} \sum_{i=1}^N \frac{2\pi}{\omega_i} = \frac{1}{N} \sum_{i=1}^N T_i.$$
 (13)

Thus, the achievable frequency is such that the cycle duration T^* is the average cycle duration among all the oscillators when running with their natural frequencies $\frac{1}{T_i}$'s.

Notice also that this property is still preserved if every time a new clock is added to the network, its γ_i is initialized to 1, since then we will still have $\mathbf{1}_{N+1}^T \gamma_{N+1}^0 = \mathbf{1}_N^T \gamma_N^0 + 1 = N + 1$.

IV. GLOBAL SYNCHRONIZATION

A. Frequency Concensus

We first present our global convergence result for frequency consensus.

Theorem 1 (Frequency Consensus): Consider the system (10) running over connected graphs G and G_a , with f_{ij} being symmetric, odd and continuously differentiable. Then, for every initial condition, the trajectories converge to a limit cycle as in (4) with ω^* as in (11).

 $\begin{array}{l} \textit{Proof:} \ \ \text{Consider the Lyapunov candidate function } W:\\ \mathbb{T}^N\times\mathbb{R}^N\to\mathbb{R}, \end{array}$

$$W(\phi, \gamma) = \frac{1}{2}\gamma^T \Omega \gamma + V(B^T \phi), \qquad (14)$$

where

$$V(y) = \sum_{ij \in E} \int_0^{y_{ij}} f_{ij}(s) ds.$$

Notice that the domain of W is composed by the cross product (×) of a compact space \mathbb{T}^N and the unbounded space \mathbb{R}^N . Therefore, to apply the global version of Lassale's Invariance Principle we only need W to be radially unbounded with respect to γ which is true since Ω is positive definite.

Thus, for any given initial condition (ϕ_0, γ_0) with $W(\phi_0, \gamma_0) = c$ we can always find a scalar r > 0 such that for every γ not in a ball $\mathcal{B}_r \subset \mathbb{R}^N$ of radius r and center 0, $W(\phi, \gamma) > c$ for any $\phi \in \mathbb{T}^N$. Therefore, the set $\Psi_c := \{(\phi, \gamma) : W(\phi, \gamma) \le c\} \subset \mathbb{T}^N \times \mathcal{B}_r$ si compact.

We start by taking the derivative of W along the trajectories. This gives

$$\begin{split} \dot{W}(\phi,\gamma) &= \gamma^T \Omega \dot{\gamma} + \left\langle B \nabla V(B^T \phi), \dot{\phi} \right\rangle \\ &= \gamma^T \Omega [-BF(B^T \phi) - BB^T \Omega \gamma] \\ &+ \left\langle B \nabla V(B^T \phi), \Omega \gamma \right\rangle \\ &= -\gamma^T \Omega L(a) \Omega \gamma - \gamma^T \Omega BF(B^T \phi) \\ &+ \gamma^T \Omega BF(B^T \phi) \\ &= -(\gamma \Omega)^T L(a)(\Omega \gamma) \leq 0 \end{split}$$

where in the first two steps we use the chain rule for gradients $\nabla(V \circ B^T)(\phi) = B\nabla V(B^T\phi)$ and (10), in the third step we use the identity $\nabla V(y) = F(y)$, and in the last step we used the fact that L(a) is positive semidefinite, i.e. $x^T L(a) x \ge 0$ $\forall x$.

Thus, we have shown that Ψ_c is a compact positively invariant set since $\dot{W}(\phi, \gamma) \leq 0 \ \forall (\phi, \gamma) \in \Psi_c$. Lassale Invariance Principle then implies that the system converges to the largest invariant M set inside $\{\dot{W} \equiv 0\} \cap \Psi_c$. Now, since G_a connected implies that $\mathbf{1}_N$ is the only eigenvector of L(a) with zero eigenvalue, then $\dot{W} \equiv 0$ implies

$$\Omega\gamma(t)\equiv\omega(t)\mathbf{1}_N.$$

Differentiating both sides, we get $\Omega \dot{\gamma}(t) \equiv \dot{\omega}(t) \mathbf{1}_N$ which is also restricted to span $(\mathbf{1}_N)$. However, we already know that $\dot{\gamma}(t) \in \ker[\mathbf{1}_N^T]$. Then, since

$$\Omega^{-1}\operatorname{span}[\mathbf{1}_N] \cap \ker[\mathbf{1}_N^T] = \{0\},\$$

we must have $\dot{\gamma} \equiv 0$, which implies $\gamma(t) \equiv \omega^* \Omega^{-1} \mathbf{1}_N$ for some constant scalar ω^* . Therefore we must have $M = M_{\mathbb{T}^N} \times \{\omega^* \Omega^{-1} \mathbf{1}_N\}$ and the system converges to an orbit like (4). Proposition 1 shows that ω^* is as in (11).

Remark 2: Theorem 1 guarantees that the system will synchronize to the frequency harmonic mean of the nodes (provided $\gamma_i^0 = 1$) but it does not guarantee phase consensus. The main problem is that, as in the classical couple oscillators system, there might be other attractive orbits besides consensus. In the next section we show that certain conditions on coupling functions can guarantee that only the phase consensus orbit is attractive.

B. Phase Consensus

In this section we focus on studying the stability of the limit cycles. We know from Theorem 1 that (10) converges for every initial condition to an orbit like (4), where ω^* is characterized by (11). Also, since $\gamma(t) \rightarrow \gamma^*$ with $\gamma_i^* = \frac{\omega^*}{\omega_i}$, then (10a) implies that ϕ^* is a solution to

$$BF(B^T\phi^*) = 0.$$

These orbits are exactly the same that would be achieved by the system of coupled oscillators (5) if $\omega_i = \omega^*$ and f_{ij} is as in Theorem 1. Their stability, when using (5), depends on the locations of the eigenvalue of the matrix

$$L(w(\phi^*)) = B \operatorname{diag}[f'_{ij}(\phi^*_j - \phi^*_i)]B^T,$$

which is the negation of the jacobian of (5). Thus, if there is one negative eigenvalue of $L(w(\phi^*))$, then the orbit defined by ϕ^* is unstable.

The challenge in the coupled oscillators case was finding conditions on f_{ij} that guarantee the instability of every nonconsensus orbit since their locations are typically unknown. In [9] it was shown that a sufficient condition for phase consensus is that f_{ij} belongs to the family of functions \mathcal{F}_b , with $b \in (0, \frac{2\pi}{N-1}]$, such that f_{ij} is:

• Symmetric: $f_{ij} = f_{ji} \ \forall ij$

• Odd: $f_{ij}(-\theta) = -f_{ij}(\theta)$

- Continuously Differentiable: $f_{ij} \in C^1$
- $f'_{ij}(\theta; b) > 0$, $\forall \theta \in (0, b) \cup (2\pi b, 2\pi)$, and $f'_{ij}(\theta; b) < 0$, $\forall \theta \in (b, 2\pi b)$.

See Figure 3 for an illustration with $b = \frac{\pi}{2}$ and $\frac{\pi}{6}$.

Fig. 3. Coupling function $f_{ij} \in \mathcal{F}_b$ for $b = \frac{\pi}{2}$ and $b = \frac{\pi}{6}$

Although the Jacobian matrix of (10),

$$J_{\phi^*} = \begin{bmatrix} 0 & \Omega \\ -L(w(\phi^*)) & -L(a)\Omega \end{bmatrix},$$

now depends on other terms like L(a) and Ω , we will show that, provided L(a) is positive semidefinite with only one zero eigenvalue and $\omega_i > 0 \ \forall i \in V$, the eigenvalues of $L(w(\phi^*))$ still control the stability.

In order to see this property, consider small perturbation $\delta\phi$, $\delta\gamma$ around a certain orbit (4) and the following change of variable

$$x = T^T \delta \phi, \quad z = T^T \Omega \delta \gamma$$

where $T \in \mathbb{R}^{n \times (n-1)}$ is the matrix whose columns $\{T_i\}$ are orthonormal and span ker $[\mathbf{1}^T]$. Notice that by definition, TT^{T} is the orthogonal projection onto ker $[\mathbf{1}^{T}]$ and $T^{T}T =$ I_{n-1} , the identity matrix of dimension n-1.

The transformation T is clearly not invertible, but it is quite useful to keep track of the disagreement of $\delta\phi$ and $\Omega \delta \gamma$. This is because given $x = T^T v$, then x becomes zero only when $v \in \text{span}(1)$.

In other words, the change of variable maps the reference orbit to the point x = 0, z = 0, and the corresponding dynamics

$$\dot{x} = z$$

$$\dot{z} = T^T \Omega[L(w(\phi^*)) + L(a)Tz]$$

describes the evolution of $\delta\phi$ and $\Omega\delta\gamma$ projected onto the subspace ker $[\mathbf{1}^T]$

We now show the following theorem.

Theorem 2 (Orbits Instability): Given connected graphs G and G_a , positive definite Ω and positive semidefinite L(a). Consider any orbit described by ω^* and ϕ^* as in (4). Whenever $L(w(\phi^*))$ has a negative eigenvalue, the orbit is unstable.

Proof: We prove this theorem by showing that if $L(w(\phi^*))$ has a negative eigenvalue, the equilibrium $(x^*, z^*) = (0, 0)$ is unstable. Thus, since x and y are projected version of $\delta\phi$ and $\Omega\delta\gamma$, this shows that in fact the orbit is unstable.

We will use Chetayev's instability theorem ([5] Th 4.3) to show our claim. Let W(x, z) be a slightly modified linearized version of (14), i.e.

$$W(x,z) = z^T (T^T \Omega T)^{-1} z + x^T T^T L(w(\phi^*)) T x.$$

Since Ω is positive definite, then $(T^T \Omega T)$ is invertible and thus W(x, z) is well defined.

Consider the set

$$U = \{(x, z) | W(x, z) \le 0\}$$

Since $L(w(\phi^*))$ is symmetric and has at least one negative eigenvalue, there is some vector $v \in \ker[\mathbf{1}^T]$ with ||v|| = 1such that

$$W(v,0) = -\varepsilon < 0,$$

which implies $U \neq \emptyset$. In fact, since for any $\lambda > 0$, $W(\lambda v, 0) = -\lambda^2 \varepsilon < 0, (0, 0)$ is in the boundary of U, i.e. $(0,0) \in \partial U$.

Also, a similar computation like the one in Theorem 1 for $\hat{W}(\phi,\gamma)$ shows that

$$\dot{W}(x,z) = -z^T T^T L(a) T z < 0, \quad \forall z \neq 0,$$

where now $T^T L(a) T$ is positive definite since the range of T is the orthogonal complement of ker $[L(a)] = \text{span}[\mathbf{1}_N^T]$. Therefore, we are under the conditions of Chetayev's instability theorem and the equilibrium is unstable.

Theorem 2 provides a connection between our clock synchronization algorithm and equal frequency coupled oscillators. It essentially shows that provided $\Omega > 0$ and L(a)is positive semidefinite with only one zero eigenvalue, both systems contain the same instability condition. This allows us to prove the main result of the paper.

Theorem 3 (Phase Consensus): Consider the clock system (10) running over connected undirected graphs G and G_a . Then, provided $f_{ij} \in \mathcal{F}_b$ with $b \in (0, \frac{2\pi}{N-1}]$, for almost every initial condition (ϕ, γ) , (10) achieves phase and frequency consensus with ω^* as in (11).

Proof: Since G and G_a are connected and f_{ij} by definition is symmetric, odd and continuously differentiable, then by Theorem 1, (10) will always achieve frequency consensus. As mentioned before, since there are many possible synchronized orbits, this does not guarantee phase consensus.

However, since $f_{ij} \in \mathcal{F}_b$ with $b \in (0, \frac{2\pi}{N-1}]$, Corollary 5 of [9] guarantees that any other configuration ϕ^* of (4) will produce a negative eigenvalue in $L(w(\phi^*))$. Therefore, by Theorem 2, every limit cycle of (10) besides the phase consensus one is unstable.

So, unless the initial condition (ϕ, γ) belongs to the zero measure set that converges to these unstable orbits, (10) will always converge to the orbit with phase and frequency consensus.

C. Causality

In many applications, it is crucial that the time produced by every clock of the network never decreases. This is not granted in (10) since for arbitrary initial conditions there might be transient periods where γ_i can become negative.

In this section we provide a modification to (10) that takes care of this problem. We introduce a projection on (10) that essentially imposibilitates any trajectory trying to reach $\gamma_i(t) < 0$. This is implemented by the operation

$$[w]_{\gamma_i}^+ := \begin{cases} 0 & \text{if } \gamma_i = 0 \text{ and } w < 0\\ w & \text{otherwise} \end{cases}$$
(16)

Using (16), the system (10) becomes

$$\dot{\phi}_i = \omega_i \gamma_i \tag{17a}$$

$$\dot{\gamma}_i = \left[\sum_{j \in \mathcal{N}_i} f_{ij}(\phi_j - \phi_i) + a_{ij}(\omega_j \gamma_j - \omega_i \gamma_i)\right]_{\gamma_i}^+ \quad (17b)$$

The convergence results presented in this papers are not affected by this modification. This is because whenever $\dot{\gamma}_i$ appears in \dot{W} , it appears multiplied by γ_i , i.e.

$$\gamma_i \omega_i \dot{\gamma}_i = \gamma_i \omega_i [\sum_{j \in \mathcal{N}_i} f_{ij}(\phi_j - \phi_i) + a_{ij}(\omega_j \gamma_j - \omega_i \gamma_i)]^+_{\gamma_i}$$

Thus, since the only cases where the projection (16) is active is when $\gamma_i = 0$, then we can drop the projection from those terms and continue as described in Theorem 1.

The only problem of imposing this constrain is that we no longer keep the value of $\sum_i \gamma_i(t)$ constant. So instead of having equality in (11) we have

$$\omega^* \ge \frac{\sum_{i=1}^N \gamma_i^0}{\sum_{i=1}^N \frac{1}{\omega_i}}.$$

V. SIMULATIONS

We now present simulations to illustrate our results. In Figure 4 we simulate a network of three oscillator running the coupled oscillator algorithm (5) and the clock synchronization algorithm (10). Both graphs G and G_a are complete and the initial condition is

$$\phi^0 = (0, \frac{\pi}{3}, \frac{2\pi}{3})^T \text{ and } \gamma^0 = (1, 1, 1)^T,$$

where γ^0 is only used in (10). The frequency of each clock is $(\omega_1, \omega_2, \omega_3) = (1, 2, 3)$.

Figure 4(a) shows that while (10) can achieve phase consensus, (5) cannot achieve it due to the frequency difference. Figure 4(b) shows that both systems succeed in achieving frequency synchronization. Since the initial γ^0 sums to N =3, then (10) will have a ω^* as in (12), which in our case reduces to $\omega^* = 1.6364$.

We now show why a condition of $b \in (0, \frac{2\pi}{N-1}]$ is needed in order to guarantee phase consensus. We simulate (10) over

(a) Phase: Couple Oscillators have to compensate the frequency mismatch

Fig. 4. Different Frequency CO vs Clock Synchronization

a ring network of N = 6 nodes, set $\omega_i = 1 \quad \forall i \in V$ and initialize the state with values $\phi^0 = \left(\frac{2\pi k}{6}\right)_{k \in \{0,...,5\}}^T$ and $\gamma^0 = \mathbf{1}_6$.

Fig. 5. De-stablizing orbits by shrinking b below $\frac{\pi}{N-1}$

Figure 5 shows two simulations of the same ring network with exactly same initial conditions. The only difference is the choice of f_{ij} . Figure 5(a) shows that when we use a $b = \frac{\pi}{2} > \frac{\pi}{N-1}$ the system stays in the orbit defined by the initial condition. However, once $b = \frac{\pi}{6} < \frac{\pi}{N-1}$, Figure 5(b), the orbit is no longer stable and the system converges to the phase and frequency consensus.

VI. CONCLUSION

This paper introduces a fully distributed synchronization algorithm that is able to achieve both frequency and phase consensus for heterogeneous oscillators. We provide a sufficient condition on the coupling function that guarantees almost global convergence for arbitrary connected topology. The synchronizing frequency is shown to be the harmonic mean of the natural oscillation frequencies.

For future directions, we are interested in studying the effect of communication delays as well as investigating discrete version of (10). It is also of great interest to quantify how much damping is needed to avoid the natural oscillation of the double integrator dynamics. In [3] it was shown that in the linear case on \mathbb{R}^N , G_a only needed to have one link for the dynamics to converge to the double consensus. However, here we require G_a to be connected. We also plan to further explore the relationship between coupled oscillators and our second order dynamics. Here, we showed that the instability of the orbits in both systems coincide but we believe there is a deeper connection.

Acknowledgments: The authors thank Dr. Li Zhang from IBM Research for introducing the topic to us. The research is supported by NSF under CCF-0835706.

References

- B. Denis, J.-B. Pierrot, and C. Abou-Rjeily. Joint distributed synchronization and positioning in uwb ad hoc networks using toa. *Microwave Theory and Techniques, IEEE Transactions on*, 54(4):1896 – 1911, june 2006.
- [2] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2001.
- [3] D. Goldin, S.A. Attia, and J. Raisch. Consensus for double integrator dynamics with heterogeneous communication topologies. In *Decision* and Control, 2010. CDC 2010. 49th IEEE Conference on, dec. 2010.
- [4] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the kuramoto model of coupled nonlinear oscillators. In *Proceedings of the American Control Conference.*, volume 5, pages 4296–4301, June 30, 2004.
- [5] H. K. Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, 1996.
- [6] J.N. Laneman and G.W. Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. *Information Theory, IEEE Transactions on*, 49(10):2415 – 2425, oct. 2003.
- [7] Dan Li, K.D. Wong, Yu Hen Hu, and A.M. Sayeed. Detection, classification, and tracking of targets. *Signal Processing Magazine*, *IEEE*, 19(2):17–29, March 2002.
- [8] E. Mallada and F. Paganini. Stability of node-based multipath routing and dual congestion control. In *Decision and Control*, 2008. CDC 2008. 47th IEEE Conference on, pages 1398 –1403, dec. 2008.

- [9] E. Mallada and A. Tang. Synchronization of phase-coupled oscillators with arbitrary topology. In *Proceedings of American Control Conference*, 2010.
- [10] P. Monzón and F. Paganini. Global considerations on the kuramoto model of sinusoidally coupled oscillators. In *Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference*, pages 3923–3928, Sevilla, Spain, Dec. 2005.
- [11] A. Papachristodoulou and A. Jadbabaie. Synchronization in oscillator networks: Switching topologies and non-homogeneous delays. In Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference., pages 5692–5697, Dec. 2005.
- [12] A. Papachristodoulou and A. Jadbabaie. Synchonization in oscillator networks with heterogeneous delays, switching topologies and nonlinear dynamics. In *Proceedings of the 45th IEEE Conference on Decision and Control*, pages 4307–4312, Dec. 2006.
- [13] C.H. Rentel and T. Kunz. A mutual network synchronization method for wireless ad hoc and sensor networks. *Mobile Computing, IEEE Transactions on*, 7(5):633–646, May 2008.
- [14] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on the n-torus. Systems and Control Letters, 56(5):335 – 341, 2007.
- [15] J.S. Shamma and G. Arslan. Dynamic fictitious play, dynamic gradient play, and distributed convergence to nash equilibria. *Automatic Control, IEEE Transactions on*, 50(3):312 – 327, march 2005.
- [16] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. Strogatz. Distributed synchronization in wireless networks. *Signal Processing Magazine*, *IEEE*, 25(5):81–97, september 2008.
- [17] O. Simeone, U. Spagnolini, G. Scutari, and Y. Bar-Ness. Physical-layer distributed synchronization in wireless networks and applications. *Physical Communication*, 1(1):67–, 2008.
- [18] A. Sobeih, M. Hack, Zhen Liu, and Li Zhang. Almost peer-topeer clock synchronization. In *Parallel and Distributed Processing Symposium*, 2007. IPDPS 2007. IEEE International, pages 1 –10, march 2007.
- [19] R. Solis, V.S. Borkar, and P.R. Kumar. A new distributed time synchronization protocol for multihop wireless networks. In *Decision* and Control, 2006 45th IEEE Conference on, pages 2734 –2739, dec. 2006.
- [20] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Review, 43(2):235–286, 2001.
- [21] F. Tong and Y. Akaiwa. Theoretical analysis of interbase-station synchronization systems. *Communications, IEEE Transactions on*, 46(5):590-594, May 1998.
- [22] International Telecommunication Union. Itu-t recommendation g.811: Timing characteristics of primary reference clocks. Technical report, ITU, sep 97.
- [23] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated adaptive sleeping for wireless sensor networks. *IEEE/ACM Trans. Netw.*, 12:493–506, June 2004.