
Distributed Clock Synchronization: Joint Frequency and Phase
Consensus

Enrique Mallada, Student Member, IEEE, and Ao Tang, Member, IEEE
School of ECE, Cornell University, Ithaca, NY 14853

Abstract— Distributed synchronization has gradually gained
importance over the last two decades. The ad-hoc nature
of new applications has increased the need for robust and
scalable distributed solutions that are capable of generating
high precision timing information. However, current solutions
usually produce phase errors when the frequencies are het-
erogeneous. This paper proposes a distributed synchronization
procedure that can achieve consensus in both frequency and
phase. The algorithm uses only local information and is robust
to frequency heterogeneity and network topology. A sufficient
condition for global convergence is shown by leveraging recent
results on coupled oscillators. We further characterize an
invariant constant of the algorithm that relates the limiting
frequency ω∗ with the harmonic mean of the clocks’ natural
frequencies. Simulations are provided to illustrate and verify
these properties.

I. INTRODUCTION

The need of a common time reference among network
nodes has always been an important issue in communication
networks. Historically, it was primarily used to allow co-
herent data communication among telecommunication nodes
and coordination for medium access control in cellular
networks. These solutions usually require a centralized clock
distribution architecture and depend on highly stable clocks
with relative frequency offsets of less than 10−10 [22].

Nowadays, synchronization is used in a vast diversity of
applications. Examples of these include data fusion of time
sensitive measurements in distributed estimation or tracking
[7], energy efficient MAC protocols with sleep periods [23],
and collaborative transmission using space-time coding [6].

Unfortunately, traditional synchronization architectures
have become increasingly unsuitable for these applications
due to several reasons. First, the synchronization of the entire
network relies on a few number of nodes. This implies
the whole system is fragile to the failure of those nodes.
Second, in order to achieve high precision, expensive clocks
are usually needed. And finally, the centralized nature of
the solution makes it not scalable since errors will accumate
when the number of clocks grows.

Essentially, there are three requisites that an ideal synchro-
nization protocol should satisfy. It should be distributed and
independent of network topology, i.e., each node only uses
neighbors’ timing information to adjust it own time. It should
be robust to high variance in clock’s frequency distribution,
and it should minimize the phase error as much as possible.

Several synchronization algorithms have been proposed
along this line of thoughts, see e.g. [16], [18] and refer-
ences therein. One possible solution is to use discrete time

PLLs (Phase Lock Loop). The resulting algorithms can be
shown to globally converge but they are either sensitive to
heterogenous frequencies [21], [17], or can only be analyzed
for the two node scenario [13]. There has also been studies
on frequency and phase estimation with noisy measurements.
However, the techniques involved usually only cover large
number of nodes asymptotics [19], [1] while guaranteeing
O(1) phase errors.

This paper builds upon related work on coupled oscillator,
e.g., [4], [10], [9], [11]. These systems usually need to
introduce phase mismatch to compensate the frequency dif-
ferences. We solve this problem by adding a new integrator
in the loop together with a linear consensus term. Moreover,
we also provide a global convergence result under certain
conditions on the topology, i.e. connectivity, and coupling.

The rest of the paper is organized as follows. Section II
introduces the model. In Section III, we use an invariant
property of the system to characterize the final achieved
frequency ω∗ in term of initial conditions and system pa-
rameters. Global convergence is established in Section IV.
Simulations are used to illustrate our findings in Section V
and conclusions are presented in Section VI.

II. MOTIVATION AND MODEL

A. Modeling Clocks

We consider a network of N nodes. The connectivity of
the network is described by a graph G = (V,E) where
two nodes, i, j ∈ V , are allowed to interchange timing
information if and only if there is some edge ij ∈ E. This
exchange of information can be done by explicit transmission
or implicit estimation, and it is assumed to have negligible
delay.

Each node contains a clock of natural frequency 1
Ti

which
is assumed to be implemented by a continuous counter ni ∈
[0, 1] that increases its count according to

ṅi =
1

Ti
− δ(ni − 1), ∀i ∈ V. (1)

The Dirac’s delta function δ forces the counter to restart once
it reaches the value 1. Notice Ti is also the total time needed
for ni to go through the interval [0, 1]

The main goal of this paper is to find a control strategy that
bring all the clocks to a time consensus using only neighbors’
information, i.e.,

ni(t)→
1

T∗ t+ n∗ (mod 1), ∀i ∈ V, (2)

as t→ +∞, with T ∗ being the final common period.



Although this model might seem to pose some analytical
challenges due to the discontinuous trajectories that (1)
generates, the periodic nature of the trajectories admits a
transformation from counters ni to phases φi in the unit
circle S1 such that (1) becomes

φ̇i = ωi, ∀i ∈ V, (3)

with ωi = 2π
Ti

and whose corresponding trajectories are
smooth.

Remark 1: Equation (1) is a clock implementation that
is commonly used in computer networks. There are other
possible implementations that also have a phase model
representation, e.g. voltage controlled oscillators generating
sinusoidal signals. The results of this paper are applicable to
such systems if a suitable phase and frequency estimation is
feasible.

This transformation also provides an interesting inter-
pretation for the time consensus problem. Since the state
space of the phase model is the N -torus TN , the time
consensus problem is equivalent to the Second Order N-
torus Consensus which seeks convergence in both phase and
frequency, i.e.,

‖φj(t)− φi(t)‖ → 0 and
∥∥∥φ̇j(t)− φ̇i(t)∥∥∥→ 0,

for all i, j ∈ V as t→ +∞.
The system is said to reach frequency consensus if the

trajectories converge to limit cycles of the form

φi(t) = ω∗t+ φ∗i ∀i ∈ V, (4)

where ω∗ denotes the synchronizing frequency. Furthermore,
the system achieves phase consensus if φ∗i = φ̄, ∀i ∈ V .

To illustrate the challenge of this problem, we first con-
sider a standard model of coupled oscillators

φ̇i = ωi +
∑
j∈Ni

fij(φj − φi) (5)

in which each node i corrects its own frequency by an
additive term depending on the phase difference with its
neighbors j ∈ Ni; Ni denotes the set of nodes that are i’s
neighbors and the function fij is usually odd. Even when the
frequencies are homogenous among the nodes, (5) presents
several limit cycles of the form of (4). Their existence and
stability depend on several factors such as topology and
coupling [10], and most of the existing works are constrained
to study either local stability or fixed topologies [10], [12].

Only recently, global convergence results have been ob-
tained, first by using the aid of an artificial state in [14] and
later by adding constraints on fij [9]. In spite of these global
convergence results, all of them assume that every oscillator
has the same natural frequency ωi.

Moreover, once the frequencies are different, phase con-
sensus breaks. This is mainly due to the fact that in order
for

ω∗ = ωi +
∑
j∈Ni

fij(φ
∗
j − φ∗i ), ∀i ∈ V,

to hold, the system needs to compensate the frequency
mismatch by introducing a certain phase difference.

B. Combining Synchronization of Coupled Oscillators with
Consensus Algorithms

We now show how the limitation of coupled oscillators
in achieving phase synchronization when the frequencies
are different can be overcome by combining ideas from
coupled oscillators and linear consensus literature. In stead
of additively changing the frequency as in Equation (5), we
propose to control the clock speed using a multiplicative
scalar γi, i.e.

φ̇i = ωiγi, ∀i ∈ V. (6)

This can be done, for example, in our clock implementation
by multiplying the counter value ni times γi. In this way,
only when γi = 1, the ith clock will run at its own natural
frequency.

The problem now reduces to how to define a control law
for γi that can guarantee phase and frequency synchroniza-
tion at the same time. Since our aim is to obtain consensus
in both frequency, γiωi, and phase, φi, then the adaptation
γ̇i should accept such desired solution.

For instance, a first try to solve this problem might be to
use

γ̇i =
∑
j∈Ni

fij(φj − φi), ∀i ∈ V,

which amounts to adding an integrator to the dynamics.
Formally, we can express the dynamics in vector from as,

γ̇ = −BF (BTφ) (7a)

φ̇ = Ωγ (7b)

where Ω = diag[ωi], B is the oriented incidence matrix of
G [2], i.e.

B(k, ij) :=


1 if k = j,
−1 if k = i,
0 otherwise,

and F (·) is the column vector valued function

F (y) := [fij(yij)]ij∈E .

What it is interesting of (7) is that even though the
frequencies ωi might be different, the system still allows
phase and frequency consensus. In fact, by setting

γi =
ω∗

ωi
, and φi = φ̄,

and substituting in (7) we obtained a synchronized solution
in frequency and phase, i.e.

φ(t) = ω∗t1N + φ̄1N ,∀i ∈ V, (8)

where 1N ∈ RN is the column vector of all ones.
However, a close inspection of the jacobian matrix, unveils

an additional oscillatory behavior that this system exhibits.
The Jacobian of (7) is,

Jφ∗ =

[
0 −L(w(φ̄))
Ω 0

]
,



with (w(φ))ij = f ′ij(φj − φi) and L(w) = Bdiag[w]BT is
the w-weighted Laplacian [2]. Since this jacobian is constant
along the limit cycles (4), it can be used to study their
stability.

Although analytical computation of the eigenvalues of Jφ∗

might not be easy, it is still possible to learn some structure
by using results from matrix polynomial theory [20]. For
example, every eigenvalue of Jφ∗ can be expressed as,

λ = ±i
√
vTL(φ∗)v
vTΩv

for some eigenvector, v 6= 0, of the matrix polynomial

M(λ) = λ2Ω + L(φ∗).

Thus, oscillatory behavior is expected around the orbits
of (7). Figure 1 shows that in fact these oscillations are
sustained not only locally. We simulated a fully connected
network of 3 nodes with ωi = 1, ∀i ∈ V . The initial
condition for the states are

φ = (0,
π

2
,−π

2
)T , and γ = (1, 1, 1)T .

Therefore, although (7) allows the type of solutions we
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Fig. 1. Nonlinear oscillations of (7): Phases are plotted relative to φ1

are seeking, the additional integration introduced does not
guarantee its convergence.

A standard technique to overcome this oscillatory non-
linear behavior [15], [8] is to introduce a damping term in
(7a) such that the eigenvalues of Jφ∗ are moved away from
the imaginary axis. Suppose we add a damping term of the
form −νφ̇ where ν is some positive scalar. Equation (7b)
now becomes

γ̇ = −BF (BTφ)− νΩγ, (9)

and the eigenvalues are shifted towards the left half-plane

λ =
−νvTΩv ±

√
ν2(vTΩv)2 − 4(vTΩv)(vTL(φ∗)v)

2vTΩv
.

Figure 2 shows how now the trajectories with the same initial
conditions as before do not oscillate anymore. Unfortunately,
as Figure 2 suggests, (9) can only admit limit cycles with
ω∗ = 0 which is unsuitable for our application.

The problem is that the term −νΩγ in γ̇ is behaving like
the system

ẋ = −νx
which clearly has a unique equilibrium ∀ ν > 0 in x = 0.
Thus, we need a different solution. It is well known from
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Fig. 2. Adding a positive definite damping

linear consensus literature that for any given vector (aij)
with aij ≥ 0 the system

ẋ = −L(a)x

with initial condition x0 always converge to a solution xi =
1
n

∑n
i=1 x

0
i ∀i ∈ V provided that L(a) induces a connected

graph Ga = (V,Ea), with Ea = {ij|aij > 0}.
Therefore, it seems promising to study the system

γ̇ = −BF (BTφ)− L(a)Ωγ (10a)

φ̇ = Ωγ (10b)

In the Euclidean counterpart of this problem it is possible to
guarantee convergence when only two nodes share speed in-
formation [3]. In our case, we need to assume the undirected
graph Ga is connected.

One interpretation of the two terms of (10a) is the follow-
ing. The term −BF (BTφ) seeks phase consensus, although
it can not achieve it itself as shown. And the term −L(a)Ωγ
seeks frequency consensus and in fact it can achieve, but it
fails to guarantee phase consensus. Thus, the term −L(a)
acts as a damping term for the phase consensus algorithm,
or equivalently −BF (BTφ) acts as a correction term of the
frequency consensus algorithm.

III. SYNCHRONIZATION FREQUENCY

In this section we compute the value ω∗ achieved by (10).
We start by providing a general characterization for ω∗.

Proposition 1: Given initial conditions (φ0, γ0). If the
system (10) converges to an orbit like (4), then the achieved
frequency can be computed using

ω∗ =

∑N
i=1 γ

0
i∑N

i=1
1
ωi

. (11)

Proof: A well know property of B is that ker[BT ] =
span[1] whenever G is connected. Using this property, it is
straightforward to show that 1T γ̇ ≡ 0 since G and Ga are
connected. Then, given initial condition γ0 we have

N∑
i=1

γi(t) = 1T γ(t) = 1T (γ0 +

∫ t

s=0

γ̇(s)ds)

= 1T γ0 + 0 = 1T γ0.

Thus, the quantity
∑N
i=1 γi(t) =

∑N
i=1 γ

0
i is an invariant of

the system.



Suppose now that the system converges to a limit cycle,
or equivalently that γi(t)→ ω∗

ωi
. Then it follows

N∑
i=1

γ0i =

N∑
i=1

γi(t)→
N∑
i=1

ω∗

ωi
= ω∗

N∑
i=1

1

ωi
.

Solving for ω∗ gives the desired result.
Assuming that every clock starts with initial frequency

equal to its own natural frequency, i.e. γi = 1. Then, ω∗ will
be the harmonic mean, i.e.,

1

ω∗
=

1

N

N∑
i=1

1

ωi
. (12)

The reason why the system does not achieve the average
of {ωi} is that the system is in fact averaging a different
quantity. This can be seen by substituting ωi with 2π

Ti
in (12)

which gives,

T ∗ =
2π

ω∗
=

1

N

N∑
i=1

2π

ωi
=

1

N

N∑
i=1

Ti. (13)

Thus, the achievable frequency is such that the cycle duration
T ∗ is the average cycle duration among all the oscillators
when running with their natural frequencies 1

Ti
’s.

Notice also that this property is still preserved if every
time a new clock is added to the network, its γi is initialized
to 1, since then we will still have 1TN+1γ

0
N+1 = 1TNγ

0
N+1 =

N + 1.

IV. GLOBAL SYNCHRONIZATION

A. Frequency Concensus

We first present our global convergence result for fre-
quency consensus.

Theorem 1 (Frequency Consensus): Consider the system
(10) running over connected graphs G and Ga, with fij being
symmetric, odd and continuously differentiable. Then, for
every initial condition, the trajectories converge to a limit
cycle as in (4) with ω∗ as in (11).

Proof: Consider the Lyapunov candidate function W :
TN ×RN → R,

W (φ, γ) =
1

2
γTΩγ + V (BTφ), (14)

where

V (y) =
∑
ij∈E

∫ yij

0

fij(s)ds.

Notice that the domain of W is composed by the cross
product (×) of a compact space TN and the unbounded space
RN . Therefore, to apply the global version of Lassale’s In-
variance Principle we only need W to be radially unbounded
with respect to γ which is true since Ω is positive definite.

Thus, for any given initial condition (φ0, γ0) with
W (φ0, γ0) = c we can always find a scalar r > 0 such
that for every γ not in a ball Br ⊂ RN of radius r and
center 0, W (φ, γ) > c for any φ ∈ TN . Therefore, the set
Ψc := {(φ, γ) : W (φ, γ) ≤ c} ⊂ TN × Br si compact.

We start by taking the derivative of W along the trajecto-
ries. This gives

Ẇ (φ, γ) = γTΩγ̇ +
〈
B∇V (BTφ), φ̇

〉
= γTΩ[−BF (BTφ)−BBTΩγ]

+
〈
B∇V (BTφ),Ωγ

〉
= −γTΩL(a)Ωγ − γTΩBF (BTφ)

+ γTΩBF (BTφ)

= −(γΩ)TL(a)(Ωγ) ≤ 0

where in the first two steps we use the chain rule for gradients
∇(V ◦BT )(φ) = B∇V (BTφ) and (10), in the third step we
use the identity ∇V (y) = F (y), and in the last step we used
the fact that L(a) is positive semidefinite, i.e. xTL(a)x ≥ 0
∀x.

Thus, we have shown that Ψc is a compact positively
invariant set since Ẇ (φ, γ) ≤ 0 ∀(φ, γ) ∈ Ψc. Lassale
Invariance Principle then implies that the system converges
to the largest invariant M set inside {Ẇ ≡ 0} ∩ Ψc. Now,
since Ga connected implies that 1N is the only eigenvector
of L(a) with zero eigenvalue, then Ẇ ≡ 0 implies

Ωγ(t) ≡ ω(t)1N .

Differentiating both sides, we get Ωγ̇(t) ≡ ω̇(t)1N which is
also restricted to span(1N ). However, we already know that
γ̇(t) ∈ ker[1TN ]. Then, since

Ω−1span[1N ] ∩ ker[1TN ] = {0},

we must have γ̇ ≡ 0, which implies γ(t) ≡ ω∗Ω−11N for
some constant scalar ω∗. Therefore we must have M =
MTN × {ω∗Ω−11N} and the system converges to an orbit
like (4). Proposition 1 shows that ω∗ is as in (11).

Remark 2: Theorem 1 guarantees that the system will
synchronize to the frequency harmonic mean of the nodes
(provided γ0i = 1) but it does not guarantee phase consen-
sus. The main problem is that, as in the classical couple
oscillators system, there might be other attractive orbits
besides consensus. In the next section we show that certain
conditions on coupling functions can guarantee that only the
phase consensus orbit is attractive.

B. Phase Consensus

In this section we focus on studying the stability of the
limit cycles. We know from Theorem 1 that (10) converges
for every initial condition to an orbit like (4), where ω∗ is
characterized by (11). Also, since γ(t)→ γ∗ with γ∗i = ω∗

ωi
,

then (10a) implies that φ∗ is a solution to

BF (BTφ∗) = 0.

These orbits are exactly the same that would be achieved
by the system of coupled oscillators (5) if ωi = ω∗ and fij
is as in Theorem 1. Their stability, when using (5), depends
on the locations of the eigenvalue of the matrix

L(w(φ∗)) = Bdiag[f ′ij(φ
∗
j − φ∗i )]BT ,



which is the negation of the jacobian of (5). Thus, if there is
one negative eigenvalue of L(w(φ∗)), then the orbit defined
by φ∗ is unstable.

The challenge in the coupled oscillators case was finding
conditions on fij that guarantee the instability of every non-
consensus orbit since their locations are typically unknown.
In [9] it was shown that a sufficient condition for phase
consensus is that fij belongs to the family of functions Fb,
with b ∈ (0, 2π

N−1 ], such that fij is:
• Symmetric: fij = fji ∀ij
• Odd: fij(−θ) = −fij(θ)
• Continuously Differentiable: fij ∈ C1

• f ′ij(θ; b) > 0, ∀θ ∈ (0, b) ∪ (2π − b, 2π), and
• f ′ij(θ; b) < 0, ∀θ ∈ (b, 2π − b).

See Figure 3 for an illustration with b = π
2 and π

6 .
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Although the Jacobian matrix of (10),

Jφ∗ =

[
0 Ω

−L(w(φ∗)) −L(a)Ω

]
,

now depends on other terms like L(a) and Ω, we will show
that, provided L(a) is positive semidefinite with only one
zero eigenvalue and ωi > 0 ∀i ∈ V , the eigenvalues of
L(w(φ∗)) still control the stability.

In order to see this property, consider small perturbation
δφ, δγ around a certain orbit (4) and the following change
of variable

x = TT δφ, z = TTΩδγ

where T ∈ Rn×(n−1) is the matrix whose columns {Tj}
are orthonormal and span ker[1T ]. Notice that by definition,
TTT is the orthogonal projection onto ker[1T ] and TTT =
In−1, the identity matrix of dimension n− 1.

The transformation T is clearly not invertible, but it is
quite useful to keep track of the disagreement of δφ and
Ωδγ. This is because given x = TT v, then x becomes zero
only when v ∈ span(1). .

In other words, the change of variable maps the reference
orbit to the point x = 0, z = 0, and the corresponding
dynamics

ẋ = z

ż = TTΩ[L(w(φ∗)) + L(a)Tz]

describes the evolution of δφ and Ωδγ projected onto the
subspace ker[1T ]

We now show the following theorem.

Theorem 2 (Orbits Instability): Given connected graphs
G and Ga, positive definite Ω and positive semidefinite
L(a). Consider any orbit described by ω∗ and φ∗ as in (4).
Whenever L(w(φ∗)) has a negative eigenvalue, the orbit is
unstable.

Proof: We prove this theorem by showing that
if L(w(φ∗)) has a negative eigenvalue, the equilibrium
(x∗, z∗) = (0, 0) is unstable. Thus, since x and y are
projected version of δφ and Ωδγ, this shows that in fact
the orbit is unstable.

We will use Chetayev’s instability theorem ([5] Th 4.3) to
show our claim. Let W (x, z) be a slightly modified linearized
version of (14), i.e.

W (x, z) = zT (TTΩT )−1z + xTTTL(w(φ∗))Tx.

Since Ω is positivedefinite, then (TTΩT ) is invertible and
thus W (x, z) is well defined.

Consider the set

U = {(x, z)|W (x, z) ≤ 0}
Since L(w(φ∗)) is symmetric and has at least one negative
eigenvalue, there is some vector v ∈ ker[1T ] with ‖v‖ = 1
such that

W (v, 0) = −ε < 0,

which implies U 6= ∅. In fact, since for any λ > 0,
W (λv, 0) = −λ2ε < 0, (0, 0) is in the boundary of U ,
i.e. (0, 0) ∈ ∂U .

Also, a similar computation like the one in Theorem 1 for
Ẇ (φ, γ) shows that

Ẇ (x, z) = −zTTTL(a)Tz < 0, ∀z 6= 0,

where now TTL(a)T is positive definite since the range of
T is the orthogonal complement of ker[L(a)] = span[1TN ].
Therefore, we are under the conditions of Chetayev’s insta-
bility theorem and the equilibrium is unstable.

Theorem 2 provides a connection between our clock
synchronization algorithm and equal frequency coupled os-
cillators. It essentially shows that provided Ω > 0 and L(a)
is positive semidefinite with only one zero eigenvalue, both
systems contain the same instability condition. This allows
us to prove the main result of the paper.

Theorem 3 (Phase Consensus): Consider the clock sys-
tem (10) running over connected undirected graphs G and
Ga. Then, provided fij ∈ Fb with b ∈ (0, 2π

N−1 ], for
almost every initial condition (φ, γ), (10) achieves phase and
frequency consensus with ω∗ as in (11).

Proof: Since G and Ga are connected and fij by
definition is symmetric, odd and continuously differentiable,
then by Theorem 1, (10) will always achieve frequency con-
sensus. As mentioned before, since there are many possible
synchronized orbits, this does not guarantee phase consensus.

However, since fij ∈ Fb with b ∈ (0, 2π
N−1 ], Corollary

5 of [9] guarantees that any other configuration φ∗ of (4)
will produce a negative eigenvalue in L(w(φ∗)). Therefore,
by Theorem 2, every limit cycle of (10) besides the phase
consensus one is unstable.



So, unless the initial condition (φ, γ) belongs to the zero
measure set that converges to these unstable orbits, (10)
will always converge to the orbit with phase and frequency
consensus.

C. Causality

In many applications, it is crucial that the time produced
by every clock of the network never decreases. This is not
granted in (10) since for arbitrary initial conditions there
might be transient periods where γi can become negative.

In this section we provide a modification to (10) that
takes care of this problem. We introduce a projection on
(10) that essentially imposibilitates any trajectory trying to
reach γi(t) < 0. This is implemented by the operation

[w]+γi :=

{
0 if γi = 0 and w < 0

w otherwise
(16)

Using (16), the system (10) becomes

φ̇i = ωiγi (17a)

γ̇i = [
∑
j∈Ni

fij(φj − φi) + aij(ωjγj − ωiγi)]+γi (17b)

The convergence results presented in this papers are not
affected by this modification. This is because whenever γ̇i
appears in Ẇ , it appears multiplied by γi, i.e.

γiωiγ̇i = γiωi[
∑
j∈Ni

fij(φj − φi) + aij(ωjγj − ωiγi)]+γi

Thus, since the only cases where the projection (16) is active
is when γi = 0, then we can drop the projection from those
terms and continue as described in Theorem 1.

The only problem of imposing this constrain is that we
no longer keep the value of

∑
i γi(t) constant. So instead of

having equality in (11) we have

ω∗ ≥
∑N
i=1 γ

0
i∑N

i=1
1
ωi

.

V. SIMULATIONS

We now present simulations to illustrate our results. In
Figure 4 we simulate a network of three oscillator running
the coupled oscillator algorithm (5) and the clock synchro-
nization algorithm (10). Both graphs G and Ga are complete
and the initial condition is

φ0 = (0,
π

3
,

2π

3
)T and γ0 = (1, 1, 1)T ,

where γ0 is only used in (10). The frequency of each clock
is (ω1, ω2, ω3) = (1, 2, 3).

Figure 4(a) shows that while (10) can achieve phase con-
sensus, (5) cannot achieve it due to the frequency difference.
Figure 4(b) shows that both systems succeed in achieving
frequency synchronization. Since the initial γ0 sums to N =
3, then (10) will have a ω∗ as in (12), which in our case
reduces to ω∗ = 1.6364.

We now show why a condition of b ∈ (0, 2π
N−1 ] is needed

in order to guarantee phase consensus. We simulate (10) over
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(a) Phase: Couple Oscillators have to compensate the frequency mismatch
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(b) Frequency: Both systems achieve a common frequency

Fig. 4. Different Frequency CO vs Clock Synchronization

a ring network of N = 6 nodes, set ωi = 1 ∀i ∈ V and ini-
tialize the state with values φ0 = ( 2πk

6 )Tk∈{0,...,5} and γ0 =
16.
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(a) Stable Limit Cycle: b = π
2
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(b) Stable Limit Cycle: b = π
6

Fig. 5. De-stablizing orbits by shrinking b below π
N−1

Figure 5 shows two simulations of the same ring network
with exactly same initial conditions. The only difference is
the choice of fij . Figure 5(a) shows that when we use a
b = π

2 > π
N−1 the system stays in the orbit defined by the

initial condition. However, once b = π
6 <

π
N−1 , Figure 5(b),

the orbit is no longer stable and the system converges to the
phase and frequency consensus.

VI. CONCLUSION

This paper introduces a fully distributed synchronization
algorithm that is able to achieve both frequency and phase



consensus for heterogeneous oscillators. We provide a suf-
ficient condition on the coupling function that guarantees
almost global convergence for arbitrary connected topology.
The synchronizing frequency is shown to be the harmonic
mean of the natural oscillation frequencies.

For future directions, we are interested in studying the
effect of communication delays as well as investigating
discrete version of (10). It is also of great interest to quantify
how much damping is needed to avoid the natural oscillation
of the double integrator dynamics. In [3] it was shown that in
the linear case on RN , Ga only needed to have one link for
the dynamics to converge to the double consensus. However,
here we require Ga to be connected. We also plan to further
explore the relationship between coupled oscillators and our
second order dynamics. Here, we showed that the instability
of the orbits in both systems coincide but we believe there
is a deeper connection.
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