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Abstract— This paper studies networks of identical phase-
coupled oscillators with arbitrary underlying connected graph.
By using results from algebraic graph theory, a sufficient
condition is obtained which can be used to check equilibrium
stability. This condition generalizes existing results and can
solve some previously unsolved cases. It also leads to the first
sufficient condition on the coupling function with which the
system is guaranteed to reach synchronization. Throughout the
paper, several examples are used to verify and illustrate the
theory. We also correct some mistakes in the existing literature.

I. INTRODUCTION

The model of phase-coupled oscillators has been of con-
siderable interest to different research communities. This is
mainly due to its wide application in modeling different
systems. Recent examples include the interaction of cells
[8], Josephson junction circuits [11], and the coupling of
oscillatory neurons [17].

The possible behavior of such systems is complex and
can depend on different factors. For example, the intrinsic
symmetry of the network can produce multiple limit cycles
or equilibria with relatively fixed phases (phase-locked tra-
jectories) [1], which in many cases can be stable [4]. Also,
the heterogeneity in the natural oscillation frequency can lead
to incoherence [9] or even chaos [14].

One particular interesting question is whether the coupled
oscillators will synchronize in phase in the long run. Besides
its clear theoretical value, it also has rich applications in
practice such as clock synchronization in distributed systems.
There has been active research work regarding this question,
see e.g., [3], [6], [10], [12]. However, most of them either
study special coupling functions or focus on graphs with
special symmetries.

This paper studies synchronization of identical phase-
coupled oscillators with arbitrary underlying connected graph
for a large class of coupling functions. Our main contribution
is to develop the negative cut instability condition (Theorem
2). It is a sufficient condition for an equilibrium to be
unstable. It holds for arbitrary connected graph and any odd
and symmetric coupling function. Analytically, the condition
leads to the characterization of a class of coupling functions
with which the system is guaranteed to reach synchronization
in phase.

The paper is organized as follows. After briefly introduc-
ing the model and notation in Section II, we study two moti-
vating examples in Section III. These examples provide basic
intuition about the possible complex behavior of networks
with phase-coupled oscillators. They also demonstrate some
existing results are incorrect and motivate further study. With
some facts from algebraic graph theory in section IV-A, we
present the negative cut instability theorem in section V-
A to check whether an equilibrium is unstable. This then

leads to Theorem 6 in section V-B which identifies a large
class of coupling functions with which the system always
synchronizes in phase. We conclude the paper in Section
VI.

II. MODEL

Consider the set of N oscillators, N , whose state can be
represented by phase variables ϕi ∈ S1 for each oscillator
i ∈ N . In the absence of coupling, we have

ϕ̇i = ωi, ∀i ∈ N .

Here, S1 represents the unit circle, or equivalently the interval
[0, 2π] with 0 and 2π glued together (0 ≡ 2π), and ωi = 2π

Ti
denotes the natural frequency of oscillation.

We assume that the coupling is weak enough such that the
dynamics can still be represented by their phases ϕi in the
following way,

ϕ̇i = ωi +
∑
j∈Ni

fij(ϕj − ϕi), ∀i ∈ N , (1)

where fij is a 2π-periodic function and Ni ⊂ N is the set
of “neighboring” oscillators j that are coupled with i. When
fij = sin, (1) yields the classical Kuramoto model [9].

The state space of (1) is the N dimensional torus T N
which corresponds to the direct sum of N unit circles S1,
i.e. ϕ = (ϕ1, . . . , ϕN )T ∈ T N = S11 ⊕ . . .⊕ S1N .

In this paper, we assume that all oscillators are identical
(ωi = ω ∀i) so that if we subtract ωt from ϕi ∀i, (1) yields

ϕ̇i =
∑
j∈Ni

fij(ϕj − ϕi). (2)

We will concentrate on (2). Clearly, any solution to it can
be immediately translated to (1) by adding ωt. For example,
if ϕ∗ is an equilibrium of (2), by adding ωt, we obtain a
limit cycle in (1).

We are interested in the attracting properties of phase-
locked invariant orbits within T N , which can be represented
by

ϕ(t) = ω∗t1N + ϕ∗,

where 1N = (1, . . . , 1)T ∈ T N , and ϕ∗ and ω∗ are solutions
to

ω∗ =
∑
j∈Ni

fij(ϕ
∗
j − ϕ∗i ), ∀i. (3)

Whenever the system reaches one of these orbits, we say
that it is synchronized or phase-locked, and if all the elements
of ϕ∗ are equal, we say the system is synchronized in-phase
or that it is in-phase locked.

It is easy to check that for a given equilibrium ϕ∗ of (2),
any solution of the form ϕ∗ + λ1N , with λ ∈ R, is also an



equilibrium that identifies the same limit cycle. Therefore,
two equilibria ϕ1,∗ and ϕ2,∗ will be considered to be
equivalent, if both identifies the same orbit, or equivalently,
if both belongs to the same set of equilibria

Eϕ∗ := {ϕ ∈ T N |ϕ = ϕ∗ + λ1N , λ ∈ R}.

Throughout this paper we concentrate on the class of
coupling function fij with the following characteristics:

Assumption 1 Properties of fij:
(a) Symmetric coupling: fij = fji ∀ij.
(b) Odd: fij(−θ) = −fij(θ).
(c) C1: fij is continuously differentiable.

To the best of our knowledge, the first attempt to study
(2) with fairly general fij and arbitrary coupling topology
was in [10], using previous results in multi-agent control
and consensus algorithms [13]. There, they tried to show
that whenever fij is odd and θfij(θ) > 0 ∀θ 6= 0 the system
globally synchronize in-phase. However, the analysis there
was incorrect since the analogy between these two systems
is incomplete; the main difference is the periodicity of fij ,
which makes θfij(θ) > 0 ∀θ 6= 0 impossible and gives (2)
other non in-phase equilibria. We will discuss this further
with concrete examples in the next section.

III. MOTIVATING EXAMPLES

In order to gain insight on the complexity of this problem,
and its dependence on the shape of fij as well as the network
topology, we study two examples that illustrate the behaviors
not captured in [10].

Example 1 (Two Oscillators) We first consider two con-
nected oscillators, i.e., N = {1, 2}. Let f has a shape as in
Figure 1 with f(0) = f(π) = 0. In this case (2) reduces to

ϕ̇i = f(ϕj − ϕi). i, j ∈ {1, 2}, j 6= i. (4)
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Fig. 1. Plot of function f

Equation (4) has only two equilibria sets Eϕ∗
0

and Eϕ∗
π

;
one in-phase identified by ϕ∗0 = 1N = (1, 1)T and another in
anti-phase identified by ϕ∗π = (0, π)T . Also, because f(θ) ≥
0 for θ ∈ [0, π] and f(θ) ≤ 0 for θ ∈ [π, 2π], for any
|ϕj − ϕi| 6∈ {0, π}, the drift pushes the phases together; see
Figure 2. Therefore, unless the initial conditions belong to
Eϕ∗

π
both oscillators will always converge to Eϕ∗

0
and thus

synchronize in-phase.

Fig. 2. Attracting drift

However, this implies that Theorem 2 of [10] cannot hold,
i.e. the in-phase equilibria set Eϕ∗

0
is not globally asymp-

totically stable, since there is a set of initial conditions that
do not converge to it. Furthermore, the Lyapunov function
used in [10], |ϕ|2, does not work in the whole the state
space. This can be readily verified in Figure 3(b), where
|ϕ(t)|2 can increase along trajectories even when the system
synchronizes in-phase.
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Fig. 3. A counter example for the Lyapunov function in [10]

The preceding example is still simple in the sense that the
anti-phase equilibria set Eϕ∗

π
is unstable (as it is shown in

Section V-A). However, when N > 2, new stable orbits Eϕ∗

can appear as we show in the next example.

Example 2 (Three oscillators) Consider now three oscilla-
tors coupled all to all with the same function f as before.
Again, since f is odd, each phase locked solution of (3)
must be an equilibrium (see Corollary 2.2 of [3]). However,
due to network symmetry, a new stable Eϕ∗ appears, with
ϕ∗ = (− 2π

3 , 0,
2π
3 )T . Figure 4 illustrates it by showing the

trajectories starting close to the set eventually converge to it,
which suggests that the equilibrium set Eϕ∗ is stable. This
example hints that the problem can be very complex. Since as
N grows, the number of sets Eϕ∗ can explode and become
difficult to locate for an arbitrary graph.

In the rest of this paper we progressively show how
Assumption 1 with some extra conditions on fij guarantees
in-phase synchronization for arbitrary graph. Since we know
that the network can have many other phase-locked trajecto-
ries besides the in-phase one, our target is an almost global
stability result [15], meaning that the set of initial conditions
that does not eventually lock in-phase has zero measure.

IV. PRELIMINARIES

In this section we briefly introduce some prerequisites used
in our analysis together with some new results that are easy
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Fig. 4. A stable non-in-phase equilibrium in Example 2

generalization of previous works.

A. Algebraic Graph Theory

We start by reviewing basic definitions and properties
from graph theory [2], [5] that are used in next sections.
Let G be the connectivity graph that describes the coupling
configuration. Each graph is composed by two sets, V (G)
and E(G) ⊂ V (G)× V (G), which are called vertex set and
edge set, respectively. Each individual vertex is represented
by i or j, and each edge by either e or the pair ij. If the graph
is undirected, then ij and ji represent the same edge. Using
this new framework, N = V (G) and Ni can be compactly
defined as Ni = {j ∈ V (G)|ij ∈ E(G)}.

An undirected graph G can be directed by giving a specific
orientation σ to the elements in the set E(G). That is, for
any given edge e ∈ E(G), we designate one of the vertices
to be the head and the other to be the tail. The outcome
of this operation is a directed graph Gσ , induced by G,
where V (G) = V (Gσ) and for any ij ∈ E(G), either
ij ∈ E(Gσ) or ji ∈ E(Gσ), but not both. We also attach to
the convention that if e = ij ∈ E(Gσ) then i is the tail of e
and j is its head.

Remark 1 Although all definitions described from now on
implicitly require the graph to be oriented, the properties
used in this paper are independent of a particular orientation
σ. We therefore drop the superscript σ from Gσ with the
understanding that G is now an induced directed graph with
some fixed, but arbitrarily chosen, orientation.

Each set V (G) and E(G) can be associated with a vector
space over the real field. The vertex space V(G) is the
space of functions that maps V (G) into R|V (G)|, and the
edge space E(G) is the analogous for E(G) and R|E(G)|.

An oriented cycle L of the oriented graph G consists of
an ordered sequence of vertices i1i2i3 . . . il where i1 = il,
ik 6= i1 appears only once for k ∈ {2, 3, ..., l−1} and either
ikik+1 ∈ E(G) or ik+1ik ∈ E(G). Let E(L) denote the
set of edges that are in L, if e = ikik+1 ∈ E(L), we say
that e is oriented as L. Each oriented cycle L determines an
element zL ∈ E(G) as follows:

zL(ei) =


1 if e ∈ E(L) is oriented as L,
−1 if e ∈ E(L) is not oriented as L,
0 if e 6∈ E(L).

If we let L(G) be the set of all cycles within G, then
the subspace Z(G) of E(G) spanned by all the vectors
{zL}L∈L(G),

Z(G) := span{zL}L∈L(G)

is called the cycle space.
Now let P = (V −, V +) be a partition of the vertex set

V (G) such that V (G) = V − ∪ V + and V − ∩ V + = ∅. The
cut C(P ) associated with P , or equivalently C(V −, V +),
is defined as C(P ) := {ij ∈ E(G)|i ∈ V −, j ∈
V +, or viceversa.}. Again, each partition also determines a
vector cP ∈ E(G):

cP (e) =


1 if e goes from V − to V +,
−1 if e goes from V + to V −,
0 if e 6∈ E(V −, V +).

Analogously, the space spanned by all vectors cP is called
the cut space and denoted by C(G). A basic property of
C(G) and Z(G) is that they are orthogonal complement; i.e.
C(G)

⊕
Z(G) = E(G) and C(G)⊥Z(G).

There are several matrices associated with the oriented
graph G that embed information about its topology. However,
the one with most significance to this work is the oriented
incidence matrix B ∈ R|V (G)|×|E(G)| where

B(i, e) =


1 if i is the head of e,
−1 if i is the tail e,
0 otherwise.

We now list some properties of B that are used in
subsequent sections.
(a) The null-space of B is the cycle space Z(G).

i.e. Bz = 0 ⇐⇒ z ∈ Z(G).
(b) The range of BT is the cut space C(G), i.e., if z ∈ E(G)

is equal to BTx for some x ∈ V(G), then z ∈ C(G). Or
in other words, the column vectors of BT span C(G).

(c) If G is connected, then ker(BT ) = span(1N ).

B. Potential Dynamics
In Assumption 1, although fij being C1 is standard in

order to study local stability and sufficient to apply LaSalle’s
invariance principle [7], the symmetry and odd assumptions
have a stronger effect on the dynamics. For example, under
these assumptions the system (2) can be compactly rewritten
in a vector form as

ϕ̇ = −BF (BTϕ) (5)

where B is the adjacency matrix defined in Section IV-A and
the map F : E(G)→ E(G) is

F (y) = (fij(yij))ij∈E(G).

This new representation has several properties. First, from
the properties of B one can easily show that (3) can only
hold with ω∗ = 0 for arbitrary graphs [3] (since Nω∗ =
ω∗1TN1N = −1TNBF (BTϕ) = 0), which implies that every
phase-locked solution is an equilibrium of (2) and that every
limit cycle of the original system (1) can be represented by
some E∗ϕ on (2).



Additionally, (5) makes evident the difference between
two classes of Eϕ∗ . In the first, ϕ∗ is an equilibrium
because F (BTϕ∗) = 0 and therefore ϕ̇ = −BF (BTϕ∗) =
−B0 = 0. However, in the second class F (BTϕ∗) 6= 0 but
F (BTϕ∗) = z ∈ Z(G), and therefore when F (BTϕ∗) is
multiplied by B we get ϕ̇ = −BF (BTϕ∗) = −Bz = 0.

However, the most interesting consequence of (5) comes
from interpreting F (y) as the gradient of a potential function

W (y) =
∑

ij∈E(G)

∫ yij

0

fij(s)ds.

Then, by defining V (ϕ) = (W ◦ BT )(ϕ) = W (BTϕ), (5)
becomes a gradient descent law for V (ϕ), i.e.,

ϕ̇ = −BF (BTϕ) = −B∇W (BTϕ) = −∇V (ϕ),

where in the last step above we used the property ∇(W ◦
BT )(ϕ) = B∇W (BTϕ). This makes V (ϕ) a natural Lya-
punov function candidate since

V̇ (ϕ) = 〈∇V (ϕ), ϕ̇〉 = − |∇V (ϕ)|2 = − |ϕ̇|2 ≤ 0.

Furthermore, since the trajectories of (5) are constrained
into the N -dimensional torus T N , which is compact, we are
ready to apply LaSalle’s invariance principle. Therefore, for
every initial condition, the trajectory converges to the largest
invariant set M ⊂ {V̇ ≡ 0}.

Finally, since V̇ (ϕ) ≡ 0 implies |ϕ̇| ≡ 0 we conclude that
M equals the set of all equilibria E = {ϕ ∈ T N |ϕ̇ ≡ 0} =⋃
ϕ∗ Eϕ∗ . So we have proved the following proposition.

Proposition 1 (Global convergence) The dynamics (2) un-
der Assumption 1 converges for every initial condition to
the set of equilibrium points E. �

Remark 2 Proposition 1 is a generalization of the results of
[6] where only the Kuramoto model was considered. Clearly,
this is not enough to show almost global stability, since
it is possible to have other stable phase-locked equilibria
sets besides the in-phase one. However, if we are able show
that all the non-in-phase equilibria are unstable, then almost
global stability follows. That is the focus of the next section.

V. MAIN RESULTS

We now present the main results of the paper. Our
technique can be viewed as a generalization of [12]. By
means of algebraic graph theory, we provide a better stability
analysis of the equilibria under a more general framework.
We further use the new stability results to characterize fij
that guarantees almost global stability.

A. Local Stability Analysis
Given an equilibrium point ϕ∗, the first order approxima-

tion of (5) around ϕ∗ is

δϕ̇ = −B
[
∂

∂y
F (BTϕ∗)

]
BT δϕ,

were δϕ = ϕ − ϕ∗ is the incremental phase variable, and
∂
∂yF (B

Tϕ∗) ∈ R|E(G)|×|E(G)| is the Jacobian of F (y)

evaluated at BTϕ∗, i.e.,
∂

∂y
F (BTϕ∗) = diag

(
{f ′ij(ϕ∗j − ϕ∗i )}ij∈E(G)

)
.

Now let A = −B
[
∂
∂yF (B

Tϕ∗)
]
BT and consider the

linear system

δϕ̇ = Aδϕ.

Lyapunov’s indirect method [7] asserts:
• If there exists an eigenvalue λ of A with Reλ > 0 then

the equilibrium is unstable.
Although it is possible to numerically calculate the eigen-

values of A given ϕ∗, here we use the special structure of A
to provide a sufficient condition for instability that has nice
graph theoretical interpretations.

Theorem 2 (Negative cut instability condition) Given an
equilibrium ϕ∗ of the system (5), with connectivity graph G
and fij satisfying Assumption 1. If there exists a cut C(P )
such that the sum ∑

ij∈C(P )

f ′ij(ϕ
∗
j − ϕ∗i ) < 0, (6)

the equilibrium ϕ∗ is unstable.

Proof: Let D := ∂
∂yF (B

Tϕ∗). In order to apply the
instability criterion of Lyapunov’s indirect method, we need
to find at least one eigenvalue of BDBT with Reλ < 0. If
such eigenvalue existed, it would imply the existence of an
eigenvalue of A with ReλA > 0, and therefore the instability
of ϕ∗.

Since BDBT is symmetric (recall D is diagonal), it
is enough to find some direction x ∈ V(G) such that
xTBDBTx < 0, since that would imply the existence of
such negative eigenvalue. Also, since we know that the range
of BT is the cut space C(G), for any y ∈ C(G) there exists
an x ∈ V(G) such that y = BTx.

Now let y = cP for some partition P = (V −, V +) as
defined in (IV-A) and let xP ∈ V(G) such that cP = BTxP .
Note that∑

ij∈C(P )

f ′ij(ϕ
∗
j − ϕ∗i ) = cTPDcP = xTPBDB

TxP .

Therefore, when condition (6) holds, there exists some
xP ∈ V(G) with xTPBDB

TxP < 0, which implies that
A = −BDBT has at least one eigenvalue whose real part
is positive.

Remark 3 • Theorem 2 provides a sufficient condition
for instability; it is not clear what happens when (6)
does not hold. However, it gives a graph-theoretical
interpretation that can be used to provide stability
results for general topologies. That is, if the minimum
cut cost is negative, the equilibrium is unstable.

• There are several fast algorithms like [16] to find the
minimum cut cost of an arbitrary graph that can be
used. Thus this Theorem can also provide a compu-
tational instability check, alternative to calculating all
the eigenvalues of A, which can be computationally
demanding for large networks.

When (6) is specialized to P = ({i}, V (G)\{i}) and
fij(θ) = sin(θ), it reduces to the instability condition in



Lemma 2.3 of [12]; i.e.,∑
j∈Ni

cos(ϕ∗j − ϕ∗i ) < 0. (7)

However, (6) has a broader applicability spectrum as the
following example shows.

Example 3 Consider a six oscillators network as in Figure
5, where each node is linked with its four closest neighbors
and fij(θ) = sin(θ). Then, by symmetry, it is easy to verify
that

ϕ∗ =

[
0,
π

3
,
2π

3
, π,

4π

3
,
5π

3

]T
(8)

is an equilibrium of (2).

Fig. 5. Network of six oscillators (Example 3)

We first study the stability of ϕ∗ using (7) as in [12]. By
substituting (8) in cos(ϕ∗j − ϕ∗i ) ∀ij ∈ E(G) we find that
the edge weights can only take two values:

cos(ϕ∗j − ϕ∗i ) =

{
cos(π3 ) =

1
2 , if j = i± 1 mod 6

cos( 2π3 ) = − 1
2 , if j = i± 2 mod 6

Then, since any cut that isolates one node from the rest (like
C1 = C({1}, V (G)\{1}) in Figure 5) will always have two
edges of each type, their sum is zero. Therefore, (7) cannot
be used to determine stability.

If we now use Theorem 2 instead, we are allowed to
explore a wider variety of cuts that can potentially have
smaller costs. In fact, if instead of C1 we sum over C2 =
C({1, 2, 6}, {3, 4, 5}), we obtain,∑

ij∈C2

cos(ϕ∗j − ϕ∗i ) = −1 < 0,

which implies that ϕ∗ is unstable.
Figure 6 verifies the equilibrium instability. By starting

with an initial condition ϕ0 = ϕ∗ + δϕ close to the
equilibrium ϕ∗, we can see how the system slowly starts
to move away from ϕ∗ towards a stable equilibrium set.

B. Almost Global Stability
Condition (6) also provides insight on which class of

coupling functions can potentially give us almost global
convergence to the in-phase equilibrium set E1N . If it is
possible to find some fij with f ′ij(0) > 0, and that for
any non-in-phase equilibrium ϕ∗, there is a cut C with∑
ij∈C f

′
ij(ϕ

∗
j − ϕ∗i ) < 0, then the in-phase equilibrium set
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Fig. 6. Unstable equilibrium ϕ∗. Initial condition ϕ0 = ϕ∗ + δϕ

will be almost globally stable [4]. The main difficulty is that
for general fij and arbitrary network G, it is not easy to
locate every phase-locked equilibria and thus, it is not simple
to know in what region of the domain of fij the slope should
be negative.

We now concentrate on the one-parameter family of func-
tions Fb, with b ∈ (0, π) defined by:
• Assumption 1
• f ′ij(θ; b) > 0, ∀θ ∈ (0, b) ∪ (2π − b, 2π), and
• f ′ij(θ; b) < 0, ∀θ ∈ (b, 2π − b).
See Figure 1 for an illustration with b = 3π

4 . Also note
that this definition implies that if fij(θ; b) ∈ Fb, fij(θ; b) > 0
∀θ ∈ (0, π). This property will be used later.

In order to obtain almost global stability we need b to be
small. However, since the equilibria position is not known
a priori, it is not clear how small b should be or if there is
any b > 0 such that all nontrivial equilibria are unstable. We
therefore first need to estimate the region of the state space
that contains every non-trivial phase-locked solution.

Let I be a compact connected subset of S1 and let l(I) be
its length, e.g., if I = S1 then l(I) = 2π. For any S ⊂ V (G)
and ϕ ∈ T N , define I∗(ϕ, S) as the smallest interval I such
that ϕi ∈ I ∀i ∈ S, i.e.,

I∗(ϕ, S) = argmin
I:ϕi∈I , ∀i∈S

l(I).

Since S is finite and I is compact, I∗ is always well defined.
The extremes of I∗ represent the two phases of S that
are farthest away. Therefore, we can use I∗ to define the
separation width of the elements of S within S1 as

d(ϕ, S) = l(I∗(ϕ, S)).

Direct application Proposition 2.6 of [3] gives the follow-
ing Lemma:

Lemma 3 Let fij(·; b) ∈ Fb ∀ij ∈ E(G) and G be
connected. If ϕ∗ is an equilibrium point of (5) and
d(ϕ∗, V (G)) < π, then it must be the case that ϕ∗ is an
in-phase equilibrium, i.e. ϕ∗ = λ1N for λ ∈ R.

Proof: Suppose ϕ∗ is a non-in-phase equilibrium with
d(ϕ∗, V (G)) < π. Then, all the phases are strictly contained
in a half circle and for the oscillator with smallest phase
i0, all the phase differences (ϕ∗j − ϕ∗i0) ∈ (0, π). However,
since fij(·; b) ∈ Fb implies fij(θ; b) > 0 ∀θ ∈ (0, π),



ϕ̇∗i0 =
∑
j∈Ni0

fij(ϕj − ϕi0) 6= 0. Therefore, ϕ∗ cannot
be an equilibrium which is a contradiction.

In other words, there is no equilibria, other than the
in-phase one, with all the phases within any given half
unit circle. We are now ready to establish a bound on the
value of b that guarantees the instability of the non-in-phase
equilibria.

Lemma 4 Consider fij(·; b) ∈ Fb ∀ij ∈ E(G) and arbi-
trary connected graph G. Then for any b ≤ π

N−1 and non-
in-phase equilibrium ϕ∗, there is a cut C with

f ′ij(ϕ
∗
j − ϕ∗i ; b) < 0,∀ij ∈ C

Proof: Suppose there is a non-in-phase equilibrium ϕ∗

for which no such cut C exists. Let V −0 = {i0} and V +
0 =

V (G)\{i0} be a partition of V (G) for some arbitrary node
i0.

Since such C does not exists, there exists some edge
i0j1 ∈ C(V −0 , V

+
0 ), with j1 ∈ V +

0 , such that f ′i0j1(ϕ
∗
j1
−

ϕ∗i0 ; b) > 0. Move j1 from V +
0 to V −0 and define V −1 :=

V −0 ∪ {j1} and V +
1 := V +

0 \{j1}. Now since f ′i0j1(ϕ
∗
j1
−

ϕ∗i0 ; b) > 0, then
d(ϕ∗, V −1 ) < b.

In other words, both phases should be within a distance
smaller than b.

At the kth iteration, given V −k−1, V +
k−1, again we can

find some ik−1 ∈ V −k−1, jk ∈ V +
k−1 such that ik−1jk ∈

C(V −k−1, V
+
k−1) and f ′ik−1jk

(ϕ∗jk −ϕ
∗
ik−1

; b) > 0. Also, since
at each step d(ϕ∗, {ik−1, jk}) < b,

d(ϕ∗, V −k ) < b+ d(ϕ∗, V −k−1).

Solving the recursion we get:

d(ϕ∗, V −k ) < kb.

Then, after N − 1 iterations we have V −N−1 = V (G) and
d(ϕ∗, V (G)) < (N − 1)b. Therefore, since b ≤ π

N−1 , we
obtain

d(ϕ∗, V (G)) < (N − 1)
π

N − 1
= π.

Then, by Lemma 3 ϕ∗ must be an in-phase equilibrium,
which is a contradiction, since we supposed ϕ∗ not to be in-
phase. Therefore, for any non-in-phase ϕ∗ and b ≤ π

N−1 , we
can always find a cut C with fij(ϕ∗j −ϕ∗i ; b) < 0, ∀ij ∈ C.

Corollary 5 Consider fij(θ; b) ∈ Fb and an arbitrary
connected graph G. If b ≤ π

N−1 , then any non-in-phase
equilibrium ϕ∗ is unstable.

We now have all the needed elements to prove the follow-
ing theorem.

Theorem 6 (Almost global stability) Consider fij(θ; b) ∈
Fb and an arbitrary connected graph G. Then, if b ≤
π

N−1 , the in-phase equilibrium set E1N is almost globally
asymptotically stable.

Proof: By Proposition 1, from every initial condition
the system (5) converges to the set of equilibria E. Addi-
tionally, since b ≤ π

N−1 , by Corollary 5 any non-in-phase

equilibrium ϕ∗ is unstable. So the only possible stable
solutions are such BTϕ∗ = 0. Since G is connected, this
only holds when ϕ∗ = λ1N which is always some in-phase
equilibrium. Therefore, for almost every initial condition, the
system (2) converges to the set of in-phase equilibria E1N

and thus this set is almost globally asymptotically stable.

VI. CONCLUSION

We have analyzed dynamics of identical phase-coupled
oscillators with arbitrary connections. A general condition
is developed to check equilibrium instability. We further
characterize a large class of coupling functions with which
the system is provable to reach in-phase synchronization.
We are currently extending this work with the focus on
the effect of topology on synchronization. We are also
interested in investigating to what degree the odd coupling
function assumption can be relaxed while almost global
synchronization can still be guaranteed.
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