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A unified approach to congestion control and
node-based multipath routing
Fernando Paganini, Senior Member, IEEE, and Enrique Mallada

Abstract—The paper considers a TCP/IP-style network
with flow control at end-systems based on congestion
feedback, and routing decisions at network nodes on a per-
destination basis. The main generalization with respect to
standard IP is to allow routers to split their traffic in a
controlled way between the outgoing links.

We formulate global optimization criteria, combining
those used in the congestion control and traffic engineer-
ing, and propose decentralized controllers at sources and
routers to reach these optimal points, based on congestion
price feedback. We first consider adapting the traffic splits
at routers to follow the negative price gradient; we prove
this is globally stabilizing when combined with primal
congestion control, but can exhibit oscillations in the case
of dual congestion control. We then propose an alternative
anticipatory control of routing, proving its stability for the
case of dual congestion control.

We present a concrete implementation of such algo-
rithms, based on queueing delay as congestion price. We
use TCP-FAST for congestion control, and develop a
multipath variant of the distance vector routing protocol
RIP. We demonstrate through ns2-simulations the collective
behavior of the system, in particular that it reaches the
desired equilibrium points.

I. INTRODUCTION

The congestion present in a packet-switched network
at any given time is a function of the amount of traffic
introduced by the transport layer, and of the routes
chosen by the network layer to carry this traffic to desti-
nation. Ideally, both rates and routes should be controlled
to ensure the most efficient and fair utilization of the
available bandwidth. However, while TCP congestion
control is in widespread use, it has been traditionally
difficult to adapt the network layer to congestion, except
at the very slow time-scales, where traffic engineering
is used for congestion planning. A large part of the
difficulty lies in the use by IP routers of single paths
to destination. Attempting to adapt such paths to in-
stantaneous congestion results in routing instabilities,
observed since the early days of the Arpanet, and well
documented in academic studies [2], [24]. In contrast,
multipath routing can more easily reach equilibrium:
instead of drastic switches of large bulks of traffic, it can
gradually adapt the traffic mix between different routes.

Mathematically, the distinction between single path
and multipath routing reveals itself when we consider
the optimization of a convex congestion cost to serve
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a matrix of end-to-end demands. This problem is non-
convex when one optimizes over single-path routes, but
its relaxation to multipath amounts to convex multicom-
modity optimization. References on these problems and
their use for traffic engineering are [2], [21], [6], [5].

The optimization interpretation is particularly useful if
one seeks to combine multipath routing with congestion
control, since the latter has also been framed in terms of
convex optimization of utility [10], [14], [22]. Indeed, a
multipath proposal is already present in Kelly’s original
work [10] (see also [8], [12], [23]): here one defines a
rate variable for each end-to-end path from source to
destination, and the sources control all these variables
to optimize overall utility. This proposal, while mathe-
matically well behaved, implies essentially to transfer
functionality from the network layer to the transport
layer, which must now be aware of paths inside the
network, and has scalability problems since the number
of such paths is exponential.

A more scalable, node-centric alternative is to have
routers take charge of the multipath function, by con-
trolling the split of traffic to each destination among
their outgoing links. This idea goes back to Gallager [7]
(followed by [1]) for the case of fixed input traffic; in that
work the traffic split is adapted following the gradient
of an overall cost function, interpreted as network delay.
Following some ideas in [2], this approach can also be
adapted to include “primal” flow control, as shown in
[25], which also combines it with a gradient algorithm
for power control in the case of a wireless network. Other
cross-layer work with the node-centric view for wireless
networks is [4], [13], where instead of the smooth
adaptation of traffic splits, the object of optimization is
the scheduling of wireless transmissions at each time
slot. In [18], we proposed a combination of gradient
based multipath routing with primal and dual congestion
control, identifying the criteria that are optimized in each
case, and giving partial stability results.

In this paper we extend and develop the work of
[18] in many respects. In Section II we present the
formulation from [18] and in Section III we review
the stability theory for primal laws with gradient-based
multipath adaptation as in [7]. We find, however, that
this method is unable to provide dynamic stability in the
case of dual congestion control: oscillatory instabilities
can occur due to the second order nature of the dynamics.
In response to this, we propose in Section IV an antic-
ipatory approach to route adaptation, where the control



2

of traffic splits includes a “derivative action” term that
induces stability. We prove that this control achieves the
global, social welfare equilibrium, with local stability
under any network. Some proofs are relayed to the
Appendices.

We follow the theoretical work with a discussion
on implementation in Section V, leading to a proposal
which demonstrates the practical feasibility of the ap-
proach and its moderate requirements with respect to
current practice in TCP-IP networks. Of the different
alternatives for congestion price, we focus here on
queueing delay, used by TCP variants such as Vegas [3]
and FAST [9]. The information requirements between
nodes are similar to those in a distance vector protocol,
here with congestion price as a measure of distance; we
develop a variant of RIP [19] that suits this purpose. We
also introduce modifications to TCP-FAST to suit the
multipath setting. In Section VI we present simulation
work in ns2 that demonstrates the properties of this
implementation, and in particular validates the analytical
studies. Conclusions are given in Section VII.

II. PROBLEM FORMULATION

We consider a network made up of a set of nodes
N , and a set of directed links L between them. Nodes,
denoted by the indices i and j, can be sources or
destinations of packets, or intermediate router nodes. We
describe the links either by a single index l, or by the
directed pair (i, j) of nodes they connect.

The network supports various flows between source-
destination pairs of nodes. We use the index k ∈ K to
denote an individual flow or “commodity”, and s(k),
d(k) denote respectively the corresponding source and
destination nodes. While these are unique for each k, we
allow the traffic to follow multiple paths between source
and destination. This is modeled through the following
variables for each k:
• xk, external flow in packets per second entering the

network at the source;
• yk

l , flow through link l;
• xk

i , total flow coming into node i.
At the source node the incoming flow is only external,

xk
s(k) = xk. (1)

The inflow balance equation for node j is

xk
j =

∑

i:(i,j)∈L
yk

i,j , j 6= s(k), (2)

and the outflow balance of node i is

xk
i =

∑

j:(i,j)∈L
yk

i,j , i 6= d(k). (3)

The total flow on link l is given by

yl =
∑

k

yk
l . (4)

A. Optimization problems

Following [10], we associate with each commodity
k an increasing, concave utility function Uk(xk)
that specifies the flow’s demand for rate. We formulate
a multipath counterpart of the “system problem” in [10].

Problem 1 (WELFARE): Maximize
∑

k Uk(xk),
subject to link capacity constraints yl ≤ cl, and flow
balance constraints (1-4).

The solution of this convex program gives the max-
imum achievable utility over all sources if traffic is
allowed to follow multiple routes between source and
destination. Our main objective in this paper is to devise
a decentralized control system at routers and sources to
achieve this optimum.

A second problem can be formulated replacing
capacity constraints with barrier functions φl(yl) that
specify the congestion cost at the link. We assume
φl(yl) is increasing and convex in yl.

Problem 2 (SURPLUS): Maximize

S :=
∑

k

Uk(xk)−
∑

l

φl(yl), (5)

subject to flow balance constraints (1-4) .

In economic terms, S above is the aggregate surplus
(see e.g. [16]). As a special case when demand is
inelastic, it includes the optimal routing problem of
minimizing

∑
l φl(yl) for a fixed traffic matrix. This was

the problem studied in [7] for φl interpreted as delay; for
that case, the generalization (5) was developed in [25].

B. Control variables

By appropriate redefinition of the variables, the above
problems can be shown to be equivalent to those con-
sidered in [10], [12], [23], in terms of rates per route or
path across the network. As argued before, for reasons
of scalability as well as preserving layer separation, we
prefer to use the following set of variables:
• The transport layer at sources should control only

the total amount of rate xk they input to the
network, similar to current TCP congestion control.

• As in IP, the network layer at routers makes for-
warding decisions based on destination; the only
change is that multiple next hops by destination can
be used. The variable αd

i,j controls the fraction of
traffic to destination d that uses outgoing link (i, j).

Specifically, we can impose the split in each commodity,

yk
i,j = α

d(k)
i,j xk

i , (i, j) ∈ L; (6)

or alternatively the weaker condition
∑

k:d(k)=d

yk
i,j = αd

i,j

∑

k:d(k)=d

xk
i , (i, j) ∈ L. (7)
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The latter imposes the split on total rates per destination,
the factor that impacts congestion, but allows more
freedom in routing individual flows. Indeed, it may
be advantageous in practice to keep individual flows
single path, still achieving or (or approximating) the
overall multipath traffic split. We will mostly use (6)
for simplicity, but the theory extends to (7).

It is possible to infer from (6) an overall relationship
between the vector x = {xk} of input source rates, and
the vector y = {yl} of total link rates. Given a set of
split ratios α = {αd

i,j}, under some mild assumptions
on connectivity, the relationship y = R(α)x follows
from (1-4) and (6), see Appendix A. The routing matrix
R(α) generalizes the single-path routing case, where it
is simply a matrix of zeros and ones.

If α is fixed, replacing the constraints in Problem 1
and Problem 2 by the relationship y = R(α)x yields
the optimization problems over input rates considered in
the congestion control literature [10], [22], generalized
to fixed multipath routes. Our main concern, however, is
to use the routing splits as variables, and control them to
solve the original problems with unconstrained routing.

C. Feedback signals

As in congestion control, the primary feedback signal
is a congestion measure or price pl for each link l ∈ L;
we assume pl depends only the total traffic yl; there is
no “service differentiation” between commodities. Later
on we discuss choices on how to define this price.

In our multipath setting, different paths from a node
to destination will have their own congestion prices at
any time. We do not require routers to be aware of such
paths; rather, they can work with local and neighbor
information to infer their price-to-destination qd

i , i ∈ N ,
representing the average price of sending packets from
node i to destination d, using the current routing patterns.
Node prices are thus defined to satisfy

qd
d = 0,

qd
i =

∑

j:(i,j)∈L
αd

i,j [pi,j + qd
j ], i 6= d. (8)

Given link prices pi,j , under mild conditions there exist
unique solutions qd

i to the above recursive equations.
More details are given in Appendix A. At the source
node of commodity k, the node price summarizes the
congestion cost of the network. We denote it by

qk := q
d(k)
s(k) .

To determine the qd
i in a decentralized network requires

communication across neighboring nodes, and recursive
updates that take time to converge. We do not model
these dynamics; further comments are given in Section
V. We are also not modeling the delays incurred
in propagation of rates through the network and of
congestion prices in feedback, considered in e.g. [15],
[22] for congestion control. This simplification is done
for mathematical tractability. As partial justification

we mention that our main focus is the much slower
time-scale in which routing adaptation can take place.

Remark: Congestion prices from node to destination
have also been considered in the literature on “back-
pressure” scheduling in wireless networks (e.g., [13],
[4]), motivated by the Lagrangian dual of Problem 1
with respect to the node balance constraints. In fact, we
show in Appendix B that under our proposed control, the
equilibrium values of node prices correspond to these
Lagrange multipliers. The dynamics of both proposals
are, however, very different, as are the resulting imple-
mentations. In the backpressure work, qd

i is dynamically
controlled, and routing is deduced from it, by scheduling
at each time slot the commodity with the highest price
differential. Around equilibrium, these price differentials
will equalize, and routing “chatters” between paths; the
traffic split is never explicitly found, it can only be
interpreted in a mean sense as emerging from such
fluctuations. In this paper we take, in a sense, the
opposite path: the routing splits αd

i,j will be explicitly
controlled as a “primal” variable, and the evolution of
qd
i will follow from (8) as a consequence. This induces

a different dynamics of these prices, and also enables
different forwarding implementations, as discussed later.

D. Basic relationships

The following basic lemma relates the price and flow
variables defined so far.

Lemma 1: For each commodity k,

xkqk =
∑

l∈L
yk

l pl. (9)

Proof: We write the sequence of identities
∑

i∈N
xk

i q
d(k)
i =

∑

i∈N\d(k)

xk
i

∑

j:(i,j)∈L
α

d(k)
i,j (pi,j + q

d(k)
j )

=
∑

(i,j)∈L
yk

i,j(pi,j + q
d(k)
j )

=
∑

l∈L
yk

l pl +
∑

j∈N\s(k)

q
d(k)
j

∑

i:(i,j)∈L
yk

i,j

=
∑

l∈L
yk

l pl +
∑

j∈N\s(k)

q
d(k)
j xk

j .

The first identity is from (8), the second uses (6); the
third step follows by grouping terms by the end-nodes
of the links, and the last step uses (2). Now cancelling
node terms, only the source term xkqk remains on the
left-hand side.

The following identity is obtained by aggregating over
the various commodities:

∑

k

xkqk =
∑

l∈L
ylpl. (10)

In an analogous way, one can establish the following
dynamic relationship, which holds regardless of the
chosen control laws, to be defined later:
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ẋkqk =
∑

l∈L
ẏk

l pl −
∑

(i,j)∈L
xk

i α̇
d(k)
i,j [pi,j + q

d(k)
j ]. (11)

III. GRADIENT ROUTE ADAPTATION WITH
CONGESTION CONTROL

Having defined the controlled variables (input rates
and traffic splits) and the feedback variables (link and
node prices), what remains is to choose the control laws
that map between them, to run at sources and routers.

Focusing on a router i, for each d we must define
a control law for the vector αd

i := {αd
i,j}j:(i,j)∈L of

routing splits as a function of

πd
i := {pi,j + qd

j }j:(i,j)∈L, (12)

the vector of prices to destination d seen from node i.
Both vectors have the dimension of Li, the number of
outgoing links at i, and αd

i belongs to the unit simplex

∆i = {αd
i,j ≥ 0 :

∑

j:(i,j)∈L
αd

i,j = 1}. (13)

Our first choice for the control of αd
i,j is to follow the

negative price gradient: to transfer traffic in gradual steps
from more expensive to cheaper routes. This includes the
proposal from [7] when prices are interpreted as marginal
costs, as seen below. In continuous time, we impose the
following conditions on the derivative α̇d

i :
(i) α̇d

i is negatively correlated with πd
i , i.e.

∑

j:(i,j)∈L
α̇d

i,j(pi,j + qd
j ) ≤ 0, (14)

with equality only if α̇d
i = 0.

(ii) α̇d
i is constrained so that the trajectory remains on

the simplex. In particular, it must satisfy
∑

j:(i,j)∈L
α̇d

i,j = 0. (15)

(iii) α̇d
i = 0 if and only if for each j : (i, j) ∈ L,

either qd
i = pi,j + qd

j ,

or αd
i,j = 0 and qd

i < pi,j + qd
j . (16)

In other words, split ratios per node only settle
when prices of routes that carry traffic have equal-
ized (and thus are equal to the node price) and the
remaining unused routes have higher price.

There may be more than one choice of control satis-
fying these restrictions. A specific one is

α̇d
i = βiEαd

i
[−πd

i ], (17)

where βi > 0 and Eαd
i

denotes a projection operation
required to keep the trajectory within the simplex ∆i. In
the special case when αd

i is interior to ∆i (αd
i,j > 0 ∀j)

the projection must simply enforce (15), so in this case
it is given by the matrix

E = I − 1
Li

1 · 1T , (18)

where the identity matrix and the vector of ones 1 have
the dimension Li. E applied to a vector subtracts the
mean from each component. So, for an interior αd

i , (17)
is simply α̇d

i,j = βi(πd
i − πd

i,j); namely, increase routing
in links with lower-than-average prices, decrease it in the
rest.

For αd
i on the boundary of ∆i, we want to allow the

motion of αd
i,j away from zero (to explore new routes),

but restrict it to be non-negative, so as to remain in the
simplex ∆. So, if the drift vector v points outside of ∆i,
we will replace it by its best approximation within ∆i.
We formalize this as follows: for a ∈ RLi , let Ψ∆i

(a)
denote the point in ∆i closest to a, i.e.

Ψ∆i
(a) = argminb∈∆i

|a− b|.

Now define

Eαd
i
[v] := lim

ε→0+

Ψ∆i
(αd

i + εv)− αd
i

ε
. (19)

Since the boundary of ∆i is piecewise linear, the limit
in (19) is in fact achieved for small enough ε > 0, for
which αd

i + εEαd
i
[v] becomes the point in the simplex

closest to αd
i + εv.

Remark: Adapting routes gradually means routing loops
could appear during a transient phase. To avoid this, a
blocking method was proposed in [7] which checks in-
formation on prices further downstream before initiating
transmission to a neighbor. Details on this procedure are
given in Section V. Blocking still respects the first two
conditions above but weakens the third. While (16) is
still sufficient for {α̇d

i,j} = 0, the necessity is no longer
true: a certain route may remain blocked despite being
cheaper.

We will now combine the route adaptation defined
above, with two choices of congestion control algorithms
studied in the literature. We use the notation

[w]+z :=
{

w, if w > 0 or z > 0;
0 otherwise.

A. Primal congestion control and global stability

Consider the scenario in which source rates are up-
dated as in [10] by the primal equations

ẋk = κ(xk)[U ′
k(xk)− qk]+

xk , (20)

where κ(xk) > 0, and link prices follow the static law

pl := φ′l(yl), (21)

i.e. the price is the marginal cost of the link.
The state variables of the system are the source rates

and node split ratios. We study the asymptotic behavior.

Theorem 2: Under (20-21), and assumptions (i)-(iii)
on the control of α, the system rates converge globally
to a solution of Problem 2.
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Proof: We take the derivative of the surplus along
system trajectories,

Ṡ =
∑

k

U ′
k(xk)ẋk −

∑

l

φ′l(yl)ẏl

=
∑

k

[U ′
k(xk)− qk]ẋk +

∑

k

qkẋk −
∑

l

plẏl

=
∑

k

κ(xk)[U ′
k(xk)− qk][U ′

k(xk)− qk]+
xk

−
∑

k

∑

(i,j)∈L
xk

i α̇
d(k)
i,j (pi,j + q

d(k)
j ), (22)

where we have invoked (20-21) and (11), added over k.
Both of the above sums are non-negative, using (14);
so Ṡ ≥ 0, the surplus increases along trajectories.
While Ṡ = 0 may occur outside equilibrium, a careful
application of Lasalle’s invariance principle implies the
stability result, see Appendix B.

B. Dual congestion control

We now consider the “dual” congestion control algo-
rithm first proposed in [14], where link prices follow

ṗl = γl[yl − cl]+pl
. (23)

Based on the received price qk, the sources choose a
rate that instantaneously maximizes Uk(xk)− qkxk, i.e.
xk = fk(qk) satisfying

U ′
k(xk) = qk, or xk = 0 and U ′

k(xk) < qk. (24)

Proposition 3: Consider an equilibrium of the dynam-
ics (23), with rates satisfying (24) and routing splits α
satisfying the equilibrium condition (16). Then the rates
are a solution to Problem 1.

Proof: see Appendix B.

Remark: The equilibrium is not necessarily unique, but
all equilibria are optimal.

Can we claim convergence to equilibrium under the
chosen dynamics? This fact is more delicate than in the
primal case. To gain insight, consider the restriction of
Problem 1 to fixed routing splits α:

ψ(α) := max
∑

k

Uk(xk), (25)

subject to y = R(α)x ≤ c.

Introduce the Lagrangian of this problem with respect to
the capacity constraints, and use (10):

L(α, p, x) =
∑

k

Uk(xk) +
∑

l

pl(cl − yl)

=
∑

k

[Uk(xk)− qkxk] +
∑

l

plcl. (26)

Its maximum over x for fixed α and p is achieved
precisely by the source law (24), let us denote it by

W (α, p) := max
x

L(α, p, x).

From convex duality, the minimum of the above over
p ≥ 0 is ψ(α), so the solution to Problem 1 is

ψ∗ = max
α

ψ(α) = max
α

min
p

W (α, p), (27)

a saddle point of the function W . From this perspective,
we can give an interpretation for the dual dynamics.
Applying the envelope theorem (see [16]), the partial
derivatives of W can be computed on the Lagrangian L,
at the maximizing x, leading to:

∂W

∂pl
= cl − yl,

∂W

∂αd
i,j

= −
∑

k

∂qk

∂αd
i,j

xk = −
∑

k:d(k)=d

xk
i [pi,j + qd

j ].

We omit the derivation of the last identity, which follows
from (8) and a similar argument to Lemma 1. The impli-
cation is that the dynamics (23) is a gradient projection
algorithm for the minimization over p in (27), whereas
from (14) we have

〈α̇d
i ,

∂W

∂αd
i

〉 ≥ 0 for each i,

where 〈 , 〉 denotes Euclidean inner product. Thus
α moves in the direction of the maximization in
(27). The fact that both controls produce opposite
effects on W makes it difficult to conclude something
about the joint dynamics. In [18] we performed
a two time-scale analysis, obtaining convergence
results under the assumption that α varies much more
slowly than p. It is, unfortunately, not true that the
dynamics will make the equilibrium stable when the
separation of time-scales is not ideal as assumed in [18].

Example 1: Consider a simple network with two
nodes (source and destination) and two parallel links,
of capacity c1, c2. Each link generates a price according
to (23). The traffic split can be described in this case by
a single parameter α := α1, with α2 = 1−α. An update
that follows the negative price gradient has the form

α̇ = β(p2 − p1),

with saturation to the interval [0, 1]. The equilibrium is
x∗ = c1+c2, α∗ = c1/x∗, with p∗1 = p∗2 = q∗ depending
on the chosen utility function. To simplify the analysis,
let us temporarily replace the source by an inelastic one
with rate x ≡ x∗. Also, consider a trajectory for which
the saturation constraints on α, p1, p2 remain inactive.
Denoting δα = α − α∗, δpi = pi − p∗i , the dynamics
becomes linear:


δα̇
δṗ1

δṗ2


 =




0 −β β
γ1x

∗ 0 0
−γ2x

∗ 0 0







δα
δp1

δp2


 . (28)

The eigenvalues of the preceding matrix are 0 and
±j

√
β(γ1 + γ2)x∗. The 0 eigenvalue is a consequence

of having introduced the inelastic source, which makes
the equilibrium price indeterminate. The purely imag-
inary mode is of more concern: it reveals a harmonic
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oscillation of the price and split dynamics, which could
have as large an amplitude as the saturation constraints
allow. Essentially, we are seeing the “route flaps” of
congestion-based single path routing turning up again,
in a smoother form, in our multipath algorithm.

If the elastic source is introduced back in the
problem, the dynamics is no longer linear. Nevertheless,
we can say the following: for the important case where
γl = 1/cl (i.e., price represents queueing delay), the
linearization around equilibrium replaces the mode at
zero with a stable eigenvalue, but the imaginary modes
remain. Moreover, through a Lyapunov analysis similar
to Proposition 4 below we find that asymptotically
the source rate must converge to x∗ as above, with
dynamics of α and p approaching the one in (28), and
thus exhibiting possibly large oscillations.

Remark: The above example raises a modeling question
that has been a subject of debate. Should delay be
modeled as a static function of link rate, or by the
“fluid tank” model of (23) (with γl = 1/cl)? The former
follows from classical queueing theory in steady state,
the latter captures the transient dynamics but not the
stochastic effects. In this example, this question has
central importance: if the static model is adopted, as is
done in [7], [1], [25], then Theorem 2 implies asymptotic
convergence of the traffic splits. If, instead, the model
(23) holds true, the above analysis predicts oscillations.
Which is correct? We will see in packet simulations
in Section VI that indeed oscillations are observed,
giving support to the second model, and indicating that
the stability of delay-based multipath routing requires a
different approach.

IV. ANTICIPATIVE CONTROL OF TRAFFIC SPLITS AND
ITS STABILITY

The preceding example reveals a limitation with the
adaptation of multipath routing based on the gradient
of congestion price. Oscillatory instabilities may appear,
and these are not avoided by making the adaptation
“slow”: if we reduce the parameter β, the frequency
of oscillation is reduced, but the oscillations remain. In
practice, the traffic slowly drifts between one link and
the other, and back, but does not settle in the right place.

In control terms, the culprit is the second order dy-
namics: the α’s integrate the price changes, and these
in turn integrate the variations in link rates, functions
of α: this amounts to a mass-spring kind of dynamics
with no damping. How, then, do we introduce damping
in this loop? A classical idea is to use “proportional-
derivative” control1, i.e. to introduce some anticipation
of future prices in the control of routing splits. We will
thus replace (17) by

α̇d
i = βiEαd

i
[−(πd

i + νiπ̇
d
i )], νi > 0. (29)

1We acknowledge discussions with Jeff Shamma who has recently
promoted the use of derivative action in dynamic games [20].

Remarks:
• The equilibrium properties of the control law re-

main unchanged, since the derivative terms vanish
at equilibrium. In particular, if we combine this
control with dual congestion control, it is still true
through Proposition 3 that an equilibrium point
must be a solution to the WELFARE problem.

• The fact that derivatives appear on both sides of (29)
makes it a differential equation in implicit form. In
particular, the price derivatives q̇d

j that appear in
π̇d

i will in turn depend on traffic split derivatives
through (8). The question arises as to whether this
equation is non-singular, i.e. if it can be solved into
an ordinary differential equation (ODE) at all times.
A partial answer is the following: if the routing
remains loop free at all times, then q̇d

j is only a
function of α̇i′,j′ for nodes downstream of i; by
successive substitutions we can turn this into an
ODE. This loop-free condition will automatically
be satisfied by local dynamics around equilibrium,
which is optimal hence loop free, or by the global
dynamics if the blocking method of [7], described
below, is included as a modification to (29).

We now study the behavior of the above anticipatory
control of routes in combination with dual congestion
control. We first consider a simple case, slightly more
general than the example: a network of L parallel links
between a single source and destination. Let

c =




c1

...
cL


 , y =




y1

...
yL


 , p =




p1

...
pL


 , α =




α1

...
αL




be the vectors of link capacities, rates, prices and split
ratios, and q, x the scalar source variables. We have

y = xα, q = αT p, x = f(q), (30)

where f is the decreasing demand curve determined by
(24). The equilibrium of (23-24) and (29) is

x∗ =
L∑

l=1

cl = f(q∗), α∗l =
cl

x∗
, p∗ = q∗1. (31)

Proposition 4: The equilibrium (31) is locally asymp-
totically stable under the dynamics (23-24), (29).

Before tackling the proof, we write the dynamics in
incremental variables around equilibrium, δx = x − x∗

and so on. Without loss of generality take q∗ > 0 and
small δp under which no price saturation occurs. Then

δṗl = γlδyl

= γl[(x− x∗)αl + x∗(αl − α∗l )]
= γl[δxαl + x∗δαl]. (32)

If α is interior to the unit simplex ∆ (which happens
locally since α∗ is interior), the projections in (29) are
simply given by the matrix E in (18). Also note Ep∗ =
0, so we locally rewrite (29) as

δα̇ = −βE(δp + νδṗ). (33)
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Also, noting that δα ⊥ 1 and p∗ = q∗1, (30) yields

δq = αT δp + δαT p∗ = αT δp. (34)

Proof of Proposition 4: Define the Lyapunov func-
tion candidate V ≥ 0, vanishing only at equilibrium:

V (δα, δp) =
x∗

2β
‖δα + βνEδp‖2 +

L∑

l=1

(δpl)2

2γl
.

Here ‖ · ‖ is the Euclidean norm. The derivative of δα+
βνEδp is equal to −βEδp from (33); therefore the first
term in V has derivative

x∗(δα+βνEδp)T (−Eδp) = −x∗δαT δp−x∗βν‖Eδp‖2.
Note for the above that Eδα = δα. Now, using (32), the
derivative of the second term in V is

L∑

l=1

δpl[αlδx + x∗δαl] = (αT δp)δx + x∗δαT δp.

Combining both terms and using (34) yields

V̇ = −x∗βν‖Eδp‖2 + δqδx.

Now since the demand curve f(q) is decreasing we have

δqδx = (q − q∗)(f(q)− f(q∗)) ≤ 0,

so V decreases along trajectories.
The Lasalle principle [11] implies convergence to an

invariant set where V̇ ≡ 0. This implies x ≡ x∗ and
q ≡ q∗. Also, due to the first term in V̇ we have Eδp ≡ 0
which means δp is parallel to 1, δp(t) = δq(t)1. But
since δq ≡ 0 we have δp ≡ 0. Finally, (32) implies
δα ≡ 0 so the invariant set is the equilibrium.

Remarks:
• If we set ν = 0 in the above, i.e. there is no

anticipatory term in the dynamics of α, we still
must have convergence to x ≡ x∗, as claimed in
the example above for L = 2, however there is no
guarantee that prices and α’s will converge.

• The incremental equations (32-34) are not lineariza-
tions, they are exact as long as prices remain posi-
tive and α is interior to the simplex. Therefore the
Lyapunov proof extends to show that the basin of
attraction of the equilibrium includes any sub-level
set of V (δα, δp) that does not touch these bound-
aries. If the boundaries are reached, the resulting
hybrid dynamics are more involved, with possible
discontinuities of V , which makes it difficult to
give a global result. For more extensive treatment
of these global stability issues we refer to [17].

We now state a local dynamic stability result for a
general network, with arbitrary topology and multiple
commodities.

Theorem 5: For any network, under the congestion
control (23-24), and (29), trajectories converge locally
to an equilibrium (optimum of Problem 1).

The proof is given in Appendix C.

V. IMPLEMENTATION

The theory described in the previous sections can
be taken as a basis for more than one implementation,
depending on the choice of the link congestion price,
the source utility function, and the method for sharing
congestion information between routers and with traffic
sources. In this section we discuss these issues, and
describe one such design.

A. Discussion

1) Routing protocol and node price formation:
Prevailing methods for computing single-path routing
tables in IP routers are shortest-path algorithms, with
hop-count the default metric. For this computation,
routers disseminate metric information, either globally
(in link-state protocols such as OSPF) or to neighbors
(in distance-vector protocols such as RIP), see e.g.
[19]. The latter alternative is very well suited for our
purposes, by making the node price qd

i the metric used
in announcements. Router i generates prices pi,j of its
own outgoing links, and receives announcements of
downstream prices qd

j , so it can periodically update qd
i

to the right-hand side of (8). This iteration converges
under the same conditions that ensure node prices are
well defined, as shown in Appendix A.

2) Update of split ratios, blocking, and forwarding:
The control of {αd

i,j} can follow either the gradient (17)
or anticipatory (29) dynamics, we will favor the second.
We now discuss how to avoid the transient formation of
routing loops. Thinking of the node price as a potential,
traffic should tend to flow “downhill”, and will do so
at equilibrium: node i will not permanently use link
(i, j) if qd

j > qd
i . However, since our dynamics of α

are continuous the above improper routing could occur
transitorily, and with it, routing loops. To avoid them,
[7] proposed to start from a loop-free configuration, and
to block the start of the use of a new link if there
is an improper routing in its downstream path. This
is signalled through a flag that accompanies routing
announcements, see details below.

Having explicit split variables αd
i,j allows for fine-

grained multipath forwarding, tracking these proportions
at the packet time-scale. In contrast, the backpressure
approaches [13], [4] only change paths when price
changes are observed, inherently a slower-scale
phenomenon, implying in practice route oscillations.

3) Communication of prices from routers to sources:
A major point of discussion among congestion control
implementations is whether it is necessary to introduce
explicit congestion signals between routers and sources,
or it suffices to rely on implicit measures which can be
estimated by the transport layer.

To address this issue for the multipath algorithm, it
is important to consider the time-scales involved. TCP
sources must control congestion quickly, faster than
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routing updates; hence it is not reasonable to rely only on
explicit communication of node prices, which may take
time to converge to the solution of (8). On the other
hand, a source can estimate its average congestion price
over the routes it is using, based on the ACK stream
as in single-path routing, for certain price signals: loss
or ECN marking probability, or queueing delay. In this
way, the source could estimate its price faster than the
time it takes the access router to make it explicit.

A proposal based on loss or ECN marking was out-
lined in [18]. From here on we focus on queuing delay
as a congestion measure. If pl is the delay of each link’s
queue, then qd

i in (8) is the average queueing delay
between node i and destination, and qk at the source
is the average queueing delay experienced by packets
over all paths. What sources can explicitly measure is the
average round-trip-time of their packets, RTT = D+qk,
where D is the propagation/processing delay averaged
over all routes. This “BaseRTT” does not coincide with
the minimum observed RTT used in single-path settings.
Therefore, to estimate D we will rely slow time-scale
explicit signalling, as explained below.

B. Details and ns2 implementation
1) Multipath distance vector protocol: This protocol

is based on the Bellman-Ford distance vector algorithm,
and its most well-known implementation, RIP (see e.g.
[19]). The protocol learns routes to an IP destination
address from its own locally connected networks, and
from routes received from neighboring routers. But, as
compared to RIP, our multipath protocol does not discard
a route if it has a shorter (or cheaper) alternative; rather,
it maintains in its routing table all possible next hops
for a given destination. Each row in the routing table
is accompanied with its metric, πd

i,j = pi,j + qd
j , and

its routing split variable, αd
i,j . Here pi,j is the queueing

delay of the link, measured as the link queue divided
by its capacity, and qd

j is the metric learned from the
downstream router.

When the algorithm starts, it learns the routes from
directly connected destinations, and assigns them cost
qd
j = 0. Since these are the first routes to be learned,

they are assigned αd
i,j = 1: all traffic for this destination

will initially be routed through this path. Analogously,
every time a new destination is discovered it is assigned
αd

i,j = 1; on the other hand, new routes learned for an
already known destination are assigned αd

i,j = 0.
Routing announcements of the form (destination, met-

ric, flag) are sent from each node to its neighbors. These
are sent every δr

t seconds, or also asynchronously if
the node has received a notification that changes its
routing table or metric. The first two fields are similar
to RIP’s, the metric is the weighted average qd

i from (8).
The additional flag indicates whether this is a proper
or improper route, used for blocking loops: a route is
announced as improper if at least one of the next hops
j with αd

i,j > 0 satisfies either (i) qd
j > qd

i , or (ii) node
j’s last announcement had the improper flag on.

Upon reception of an announcement from node j
with the improper flag on, if the current αd

i,j = 0, node
i will block node j for this d (denoted j ∈ Bd

i ), and
forbid the αd

i dynamics from increasing this component.

2) Split updates and projections: Updates to αd
i,j are

made periodically, with period δta, according to

αd
i,t+δta = αd

i,t + βiEαd
i
◦ EBd

i
[−(πd

i,t + νi∆πd
i,t)].

(35)

This amounts to a discretization of (29), with an ad-
ditional projection that implements blocking. We now
describe how such projections are computed. Given a
subset Φ of next-hops, and a drift vector v, let

(EΦ[v])j :=

{
vj − vΦ, j 6∈ Φ;
0, otherwise.

(36)

Here vΦ is the average of {vj , j 6∈ Φ}. Thus EΦ[v]
prevents motion in all components j ∈ Φ, and keeps the
overall average motion at zero. To implement blocking,
we simply set φ = Bd

i . We can also implement Eαd
i

this
way, only in this case Φ must be constructed iteratively.

We use Ω as an auxiliary set for this construction.
1) Set Φ = ∅ and Ω = ∅. Note that the first implies

EΦ = E as in (18).
2) Update Φ := Φ ∪ Ω.
3) Set Ω = {j : vj − vΦ < 0, αd

i,j = 0}.
4) If Ω 6= ∅ repeat from step 2; otherwise, finish.

Note that vΦ increases with each iteration: the coordi-
nates in Ω, removed from the average, are smaller than
the previous average. When no more coordinates can be
removed, the set Φ contains all coordinates of v that take
αd

i outside ∆i, consistently with the definition of Eαd
i
.

Finally, due to the finite step used in (35), the
possibility exists that αd

i could escape through another
boundary of ∆i. If this happens we adjust step size βi

down so that αd
i reaches exactly that boundary.

3) Forwarding: To forward packets in a way that
matches αd

i,j in the mean, we add the auxiliary
variable êd

i,j , updated after each packet forwarding by
êd
i,j = (1 − cd)êd

i,j + cd δj

αd
i,j

with cd ∈ (0, 1) and δj = 1
for the chosen link, δj = 0 for the rest. This assumes
equal size packets, otherwise weights can be added.
Thus êd

i,j tracks the ratio between the actual rate fraction
through link (i, j) and αd

i,j . Forwarding decisions are
made by choosing the link (i, j) with minimum êd

i,j .

4) Sources: tracking of D, TCP-FAST modifications:
Associated with source nodes are TCP-FAST agents.
These estimate average RTT and BaseRTT by running,
for each received ACK, the updates

RTT := (1− a) ∗RTT + a ∗ currentRTT,
(37)

BaseRTT := (1− b) ∗BaseRTT + b ∗ (RTT − qk).
(38)
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The RTT averaging equation (37) is standard: the
parameter a can be made inversely proportional to the
current window size. This makes the time constant of
the filter correspond to a certain number of RTTs.

Equation (38) for BaseRTT is modified from FAST,
it is not based on the minimum RTT. The reason is that,
as mentioned above, BaseRTT must track the average
propagation delay D across all used paths. The idea of
(38) is to use prices qk, explicitly communicated at the
slower routing time-scale, by the IP agent co-located
with the source. These occasional messages indicate
the correct average queueing delay (congestion price);
by lowpass filtering the difference (RTT − qk), with
parameter b << a, we are able to track the slow
variations of D in the variable BaseRTT . Then, the
instantaneous difference RTT − BaseRTT used by
TCP-FAST will track the fast variations of the source
congestion price qk.

Another modification required on TCP-FAST is that,
consistently with multipath routing, it no longer makes
sense to consider the ordering of packet arrivals in
decisions about congestion control. In particular, the
duplicate ACK feature should be removed, and RTT
averaging should be performed on all packets, not just
those which come in order.

VI. SIMULATIONS

A. Gradient vs anticipatory control

Our first simulation is intended to support our dis-
cussion on the need for anticipatory control of traffic
splits. We simulate a simple network with two parallel
routes between source and destination, with bottlenecks
of respectively 50Mbps and 100Mbps. A single TCP-
FAST source uses the network, and the input router
performs the two-way split. Figure 1 below shows the
behavior of the prices (queueing delays) on both paths,
for the cases ν = 0 (no derivative action) and ν > 0. In
both cases, the input rate stabilizes to 150Mbps, but in
the absence of derivative action, we observe oscillatory
instabilities, consistent with the second order dynamic
model discussed in Section III-B. Once we introduce
enough damping in the system, the queues settle down
around a common equilibrium price.

B. Dynamic example, 4-node topology

We now turn to a richer example that exhibits various
features of the protocol. The topology is depicted in
Figure 2. There are three groups (Grp 0, Grp 1 and Grp
2) of sources at nodes 0, 1 and 2 with 5, 10 and 10 TCP-
FAST connections each, with a common destination at
node 3 and parameters KG0 = KG1 = KG2 = 100.
This parameter represents the number of packets to be
stored in network queues in equilibrium. All links have
the same capacity (1 Gbps) and propagation delay of
10ms. Capacities and delays are the same in the reverse
path. Packet size is 1040 bytes. The following parameters
were used in routers: β = 0.25, ν = 15, δr

t = 5ms,
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Fig. 1. Dynamics of multipath routing.

δa
t = 10ms. In TCP sources, we used a−1 = cwnd,

b−1 = 30∗cwnd for the averaging of RTT and BaseRTT.

Fig. 2. Simulated network.

The simulation results are depicted below. Figures 3-5
contain split ratios and metrics (prices) for nodes 0, 1
and 2. Figure 6 contains (xk, qk) for all source groups.

In the initialization process, all nodes (0,1,2) discover
first the direct route to destination node 3. Grp 0 starts
first, and node 0 begins sending all traffic directly to node
3. This is also the default route in single path protocols
since it is the shortest path. When link (0,3) saturates,
node 0 starts splitting the rate gradually between the
other two paths and the TCP-FAST sources in Grp 0
react to the lowering in the average queueing delay by
increasing the rate. After 18 seconds node 0 reaches
equilibrium α3

0 = (α3
0,1, α

3
0,2, α

3
0,3)

T = ( 1
3 , 1

3 , 1
3 )T , and

Grp 0 sources reach their fair rate xk,∗ = (c0,1 + c0,2 +
c0,3)/5 = 600 Mbps.

At 20 seconds, Grp 1 starts sending traffic through link
(1,3), which becomes more congested, increasing the
metric π3

0,1 seen by node 0 and making it eventually stop
sending traffic through link (0,1). Notice that until this
happens, node 1 cannot start using link (1,0), although
it sees a cheaper price through that link. Only when
node 0 has completed its transfer of routing to links
(0,2) and (0,3), node 1 unblocks the cheaper route
(1,0), after which the system reaches a new equilibrium
α3

0 = (0, 1
2 , 1

2 )T , α3
1 = (α3

1,0, α
3
1,3)

T = ( 1
2 , 1

2 )T and
xk,∗ = (c0,3 + c1,3 + c2,3)/15 = 200 Mbps.

After 60 seconds, Grp 2 sources start sending traffic
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Fig. 3. Split ratios and prices from node 0.
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Fig. 4. Split ratios and prices from node 1.

from node 2 to destination 3. This reactivates the routing
algorithm at node 0 and makes it change its routing
configuration to α3

0 = (0, 0, 1)T in spite of the fact that
the link (0,3) is not the cheapest (node 1 is blocked).
After node 0 reaches its new equilibrium, both nodes 1
and 2 start changing their splits until they get to α3

1 =
(α3

1,0, α
3
1,3)

T = ( 1
6 , 5

6 )T , α3
2 = (α3

2,0, α
3
2,3)

T = ( 1
6 , 5

6 )T ,
and xk,∗ = (c0,1 + c0,2 + c0,3)/25 = 120 Mbps.

Finally, at 100 seconds, Grp 0 disconnects its TCPs
and the system reaches the last equilibrium shown in the
simulations. Node 0 stays at α3

0 = (0, 0, 1)T , sending all
traffic directly to destination 3; nodes 1 and 2 increase
the traffic fractions sent to node 0, reaching α3

1 = α3
2 =

( 1
3 , 2

3 )T . All flows achieve a rate of xk,∗ = (c0,1+c0,2+
c0,3)/20 = 150 Mbps.
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Fig. 5. Split ratios and prices from node 2.
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VII. CONCLUSIONS AND FUTURE WORK

We have proposed a framework in which multipath
routing and congestion control work in unison to pursue
a common objective: the maximization of aggregate util-
ity or surplus over the network. The control of input rates
and routing splits is decentralized, relying on a common
congestion “currency” for its decisions. We have studied
mathematically the equilibrium and dynamic properties
of various control laws; in particular, we have proposed a
new anticipatory control of traffic splits which stabilizes
the maximum welfare allocation when combined with
dual congestion control.

The theory has assumed persistent TCP flows. Given
the relatively slow dynamics of routing, it is important
to extend this work to consider the effect of finite
TCP flows that come in and out of the network. This
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remains open for future research. Another interesting
future topic is combining the above control of network
and transport layers with the lower layers, particularly
for wireless networks, possibly offering alternatives to
the backpressure scheduling approach [13], [4].

We have presented a packet implementation based on
queueing delay as a congestion price; routers measure
local prices and exchange information with neighbors,
following a multipath variant of a distance-vector routing
protocol. Fast-TCP sources estimate this delay from their
RTT measurements in real time, calibrating their prop-
agation delay through periodic interactions with the IP
layer. Our ns2 simulations verify the expected behavior
from the theory. One could alternatively consider im-
plementations based on loss or marking as a congestion
price; we will explore these in future work.

APPENDIX A: SPLIT RATIOS AND NODE PRICES

In this Appendix we study the recursive relationships
that define node prices in terms of split ratios, reproduced
here for convenience (recall qd

d = 0):

qd
i =

∑

j:(i,j)∈L
αd

i,j [pi,j + qd
j ], i 6= d. (39)

We analyze first a single destination d, taken for sim-
plicity to be node n, and define the matrices

A =




α1,1 α1,2 . . . α1,n−1

α2,1 α2,2 . . . α2,n−1

...
...

. . .
...

αn−1,1 . . . αn−1,n−1


 , a =




α1,n

α2,n

. . .
αn−1,n


 .

Here we dropped the superscript from the variables αi,j ,
and defined these for every pair of nodes; αi,j = 0 if
there is no link (i, j); in particular, the diagonal of A
is zero. The identity [A a ]1n = 1n−1 expresses the
balance of mass per node; here 1m is the vector of ones
of length m. We also define matrix B of dimensions
(n− 1)× L, where

bi,l =

{
αi,j if l = (i, j),
0 otherwise .

With this notation, the node price equations (39) can be
written in vector form as

q = Aq + Bp,

where q is the vector {qi}n−1
i=1 , and p is the vector

{pl}l∈L. We will study conditions under which the above
equations can be solved for

q = (I −A)−1Bp, (40)

a vector with non-negative elements. The most useful
case is when the routing contains no loops.

Proposition 6: Assume there is no closed loop with
αi,j > 0 in all its links. Then the matrix A is nilpotent,
An−1 = 0.

Proof: Think of αi,j as the probability that a
packet starting at i arrives at j after one hop. Assuming

independent routing decisions, the probability that the
packet arrives in j after two hops is

∑
j′ αi,j′αj′,j ,

the (i, j) element of the matrix A2. Analogously, the
(i, j) element of An−1 is the probability that the packet
arrives at j after (n − 1) hops. If this probability were
positive, it would imply the packet could stay with
positive probability in the set of nodes {1, . . . , n − 1}
for (n − 1) hops; since staying in that set requires
looping, this implies positive probability of a loop, a
contradiction.
As a consequence, if the routing disallows loops, then

(I −A)−1 = I + A + A2 + . . . An−2 ≥ 0,

therefore there exist non-negative prices q satisfying
(39). Furthermore, the iteration

q+ := Aq + Bp (41)

which represents the price propagation converges in at
most n− 1 steps.

In Gallager [7], a more general argument is given that
implies ρ(A) < 1 provided there is a path of positive
probability from any node to destination. Under these
conditions, q satisfying (39) is uniquely defined; in this
general case the convergence of (41) is asymptotic.

An additional use of the matrix notation is to make
explicit the relationship between node and link variables,
for fixed routing. For a commodity k with source node
s(k) and destination d(k) = n, let

x̃k =
[
xk

1 . . . xk
n−1

]T

be the vector of rates of commodity k entering all
nodes except d. If yk is the vector of link rates, with
links ordered as before, then the split equation (6) is
represented in matrix form by

yk = BT x̃k.

Also, the node balance equations at all nodes except d
can be represented by

AT x̃k + es(k)x
k = x̃k,

where es(k) is the canonical basis vector at the source
node. Under the same conditions as before on the rout-
ing, the above equation can be solved for x̃k, yielding

yk = BT (I −AT )−1es(k)x
k.

The above procedure can clearly be generalized to any
commodity, with destination not necessarily equal to n,
by appropriate definition of the matrices A,B, which are
destination-dependent. We obtain in general

yk = (Bd(k))T [I − (Ad(k))T ]−1es(k)x
k =: Rk(α)xk,

with Rk(α) a column vector. Adding over k we have

y =
∑

k

Rkxk = R(α)x;

we thus have an expression for the routing matrix R(α)
that maps source to link rates, for fixed α. We can also
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describe with the same matrix, the dual relationship be-
tween link and source prices. This is done by extending
(40) to any destination, and picking out of the vector q
of node prices, the source node price:

qk = eT
s(k)(I −Ad(k))−1Bd(k)p = Rk(α)T p.

From here we have the global relationship

q = R(α)T p

between the link prices and the vector of source prices,
which extends the single path case [15], [22].

We conclude the appendix with a proposition to be
used below, which refers to the gradient price dynamics.

Proposition 7: Suppose pi,j are constant. If α̇ satisfies
(14) with q specified by (39), then q converges asymp-
totically to an equilibrium value.

Proof: Taking a derivative in (39) for constant pi,j

(dropping the superscript d), we have

q̇i =
∑

j:(i,j)∈L
α̇i,j [pi,j + qj ] +

∑

j:(i,j)∈L
αi,j q̇j .

Denoting the first term by vi(t), which satisfies vi ≤ 0
due to (14), we write in matrix form q̇−Aq̇ = v. Under
the previous conditions for ρ(A) < 1, we solve

q̇ = (I −A)−1v = (I + A + A2 + . . .)v ≤ 0;

since q is lower bounded we conclude that it converges
to an equilibrium.

APPENDIX B: GLOBAL OPTIMA

We characterize optimality conditions in our optimiza-
tion problems using Lagrangian duality, and use this to
establish optimality of equilibria.

SURPLUS Problem

We start with Problem 2, rewriting it as follows:

Maximize S(x, y) =
∑

k

Uk(xk)−
∑

l

φl

(∑

k

yk
l

)

(42)

in the variables x = {xk}k∈K, and y = {yk
l }k∈K,l∈L,

subject to the constraints for every k, and i 6= d(k):

gk
i (x, y) :=

∑

j:(i,j)∈L
yk

i,j − xk = 0, i = s(k),

gk
i (x, y) :=

∑

j:(i,j)∈L
yk

i,j −
∑

j:(j,i)∈L
yk

j,i = 0, i 6= s(k).

(43)

We introduce the Lagrangian

LSUR(x, y, λ) = S(x, y) +
∑

k

∑

i 6=d(k)

λk
i gk

i (x, y)

with Lagrange multipliers λk
i k ∈ K, i 6= d(k). From

convex duality the optimization

min
λ

max
x,y≥0

LSUR(x, y, λ)

will give the same result as Problem 2. The variables
λ, x, y are at a saddle point of the dual if they satisfy
(43) and for each k we have:

∂LSUR

∂xk
= U ′

k(xk)− λk
s(k) = 0, (or < 0 and xk = 0),

(44)
∂LSUR

∂yk
i,j

= −φ′l + λk
i − λk

j = 0, (or < 0, yk
i,j = 0),

j 6= d(k); (45)
∂LSUR

∂yk
i,j

= −φ′l + λk
i = 0, (or < 0 and yk

i,j = 0),

j = d(k), (46)

where φ′l is evaluated at yl =
∑

k(yk
l ).

Primal stability proof

We complete here the proof of Theorem 2. Invoking
the Lasalle invariance principle [11], the state trajectories
will converge to an invariant set inside {(x, α) : Ṡ = 0}.
We show that this such trajectory achieves optimal rates.

In reference to (22), we see that Ṡ = 0 implies (24) for
each commodity k. Also, from (22) and the restriction
for equality in (14), for each d, i 6= d, we have

either
∑

d(k)=d

xk
i = 0,

or α̇d
i,j = 0 ∀j : (i, j) ∈ L. (47)

Consider a trajectory satisfying Ṡ ≡ 0. In particular,
ẋk ≡ 0 from (20), the external rate is constant, and
due to (47) we see that the only destinations for which
the split ratios are allowed to vary are those for which
the node is carrying no traffic. This means that while
Ṡ = 0, all link flows are constant and thus by (21) so
are link prices pi,j . Node prices can continue to vary at
nodes which carry no destination traffic, as studied in
Proposition 7.

The dynamics indeed allows for Ṡ = 0 to hold for
a finite interval of time, during which all link rates
are constant, and come out of this state later when the
evolving node prices provide a cheaper, currently unused
route. However, for a trajectory moving entirely within
the set Ṡ = 0, as stipulated in the Lasalle principle,
link rates yl and node prices pl = φ′l(yl) must remain
constant for all time. Invoking Proposition 7 denote

λk
i := lim

t→∞
q

d(k)
i .

For all nodes that receive traffic xk
i > 0, we have the

second alternative in (47) and so (16) implies conditions
(45-46). Therefore we are asymptotically at an optimum
of Problem 2.

Remark: If blocking is included in the dynamics, (16)
need not apply at any given time. However, it is not
difficult to see that in the limit for t → ∞ under the
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conditions of Proposition 7, there can be no improper
routing and thus no blocking. So the conditions (16) will
hold for the asymptotic qd, as required.

WELFARE PROBLEM

Moving now to Problem 1, we can use the same set
of variables {xk}, yk

l , and write it as

Maximize
∑

k

Uk(xk),

subject to (43) and
∑

k yk
l ≤ cl for each l.

Its Lagrangian has now additional multipliers µl ≥ 0 for
the capacity constraints:

LWEL(x, y, λ, µ) =
∑

k

Uk(xk) +
∑

k

∑

i6=d(k)

λk
i gk

i (x, y)

+
∑

l

µl(cl −
∑

k

yk
l ).

Writing the saddle point conditions for this problem
gives equations analogous to (44-46), except that we
substitute φ′l by µl, and we have the additional condition

∑

k

yk
l = cl, (or < cl and µl = 0). (48)

Proof of Proposition 3

At an equilibrium of the dual, we have

yl = cl, or yl < cl and pl = 0, (49)

together with (24), and (16). Taking µl = pl, and λk
i =

q
d(k)
i , we see these rates and multipliers are a saddle

point of LWEL, therefore an optimum of the system
problem.

APPENDIX C: STABILITY OF ANTICIPATORY CONTROL

We study the dual congestion control (23-24) with
anticipatory control of routes (29), locally around an
equilibrium point (denoted by superscript ?). Let Jd

i :=
{j : α∗,di,j > 0} be the set of neighbors used by node i
to route to d in equilibrium. For simplicity, assume

p∗i,j + q∗,dj > q∗,di ∀j 6∈ Jd
i ,

i.e. the remaining links are strictly more expensive. Then
for sufficiently small deviations from equilibrium prices,
only links in Jd

i will be used; denote by

αd
i := {αd

i,j}j∈Jd
i
, pd

i := {pi,j}j∈Jd
i
, qd

i := {qd
j }j∈Jd

i
,

the vectors of splits, link prices and downstream neigh-
bor prices of this reduced dimensionality at node i. Note
the distinction between qd

i and the scalar node price
qd
i = (αd

i )
T (pd

i + qd
i ); by analogous reasoning as in

(34) we have the incremental relationship

δqd
i = (αd

i )
T (δpd

i + δqd
i ). (50)

The equilibrium α∗,di is interior to the simplex of this di-
mension. Thus, the projection in (29) is locally achieved
by a matrix Ed

i analogous to E in (18), which projects
on ker1T for 1 of the simplex dimension.

δα̇d
i = −βiE

d
i [δpd

i + δqd
i + νiδṗ

d
i + νiδq̇d

i ]. (51)

Denote also by xd
i =

∑
k:d(k)=d xk

i the total rate destined
to d reaching node i, and by yd

i = xd
i α

d
i the corre-

sponding vector of rates over links in Jd
i . We have the

incremental relationship

δyd
i = δxd

i α
d
i + xd,∗

i δαd
i . (52)

Note that the above relationship only requires (7), the
weaker assumption on splitting by destination instead
of flow. This fact implies that the proof below readily
extends to that situation.

Proof of Theorem 5
Generalizing Proposition 4, define for node i the

Lyapunov term

Vi =
∑

d

xd,∗
i

2βi
‖δαd

i + βiνiE
d
i (δpd

i + δqd
i )‖2

+
∑

j:(i,j)∈L

(δpi,j)2

2γi,j
.

Differentiating the second term and using (23) yields
∑

j:(i,j)∈L
δpi,j

δṗi,j

γi,j
≤

∑

j:(i,j)∈L
δpi,jδyi,j =

∑

d

(δyd
i )T δpd

i ;

the inequality is due to the case where the price projec-
tion in (23) is active. Differentiating also the first term
and using (51) leads to

V̇i ≤ −βiνi

∑

d

xd,∗
i ‖Ed

i (δpd
i + δqd

i )‖2

−
∑

d

xd,∗
i (δαd

i )
T (δpd

i + δqd
i ) +

∑

d

(δyd
i )T δpd

i ;

(53)

Focus on the second line of (53); we transform each term
for fixed d using (52) and (50):

−xd,∗
i (δαd

i )
T (δpd

i + δqd
i ) + (δyd

i )T δpd
i

=(δxd
i α

d
i − δyd

i )T (δpd
i + δqd

i ) + (δyd
i )T δpd

i

=δxd
i δq

d
i − (δyd

i )T δqd
i . (54)

Now define the Lyapunov function candidate
V :=

∑
i Vi. Clearly Vi ≥ 0, and V = 0 implies

δpi,j = 0 for every link; under analogous conditions
as in Appendix A the recursive equation (50) leads
to the unique solution δqd

i = 0. The first term in Vi

then implies δαd
i,j = 0. Therefore V vanishes only at

equilibrium. Compute its derivative along trajectories:

V̇ =
∑

i

V̇i ≤ −
∑

i,d

βiνix
d,∗
i ‖Ed

i (δpd
i + δqd

i )‖2

+
∑

d

{∑

i

[
δxd

i δq
d
i − (δyd

i )T δqd
i

]
}

.

(55)
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Now write
∑

i

(δyd
i )T δqd

i =
∑

(i,j)∈L
δqd

j δyd
i,j

=
∑

j

δqd
j

∑

i:(i,j)∈L
δyd

i,j

=
∑

j

δqd
j

(
δxd

j −
∑

k : d(k) = d
s(k) = j

δxk
)

=
∑

j

δqd
j δxd

j −
∑

k:d(k)=d

δqkδxk. (56)

The third step above follows from noticing that the
(incremental) total rate δxd

j entering node j, destined to
d is the sum of components from inside and outside the
network. Substituting (56) in the term in braces of (55),
after cancellations we have the overall expression

V̇ ≤ −
∑

i,d

βiνix
d,∗
i ‖Ed

i (δpd
i + δqd

i )‖2 +
∑

k

δqkδxk.

From the demand curve of each commodity k, we have
δqkδxk ≤ 0, so V decreases along trajectories. Once
more, the Lasalle principle implies that trajectories con-
verge to an invariant set within {V̇ ≡ 0}. This condition
implies δxk ≡ 0, δqk ≡ 0, and Ed

i (δpd
i + δqd

i ) ≡ 0 for
each d, i. From the latter, α̇d

i ≡ 0 and the routing is
constant in time, therefore so are the link rates since the
input rates are fixed. These constant link rates cannot
exceed capacity, or prices would grow without bound,
contradicting the fact that qk is constant for all k. So
prices must also be at an equilibrium. The invariant
trajectories inside {V̇ ≡ 0} are equilibrium points.
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