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Abstract— This paper considers a network flow control
problem where routing and input rates are controlled in a
decentralized way across a network, to optimize a global
welfare objective. We build on our recent work which
combines “dual” congestion control for the traffic sources,
with multipath routing at the router nodes, controlling the
traffic split among outgoing links based on downstream
congestion prices. The challenge is to obtain stabilization
of the optimum point; in fact, controlling the split fractions
following the price gradient has the correct equilibrium,
but can lead to oscillatory instabilities. This suggests the
use of derivative action to damp such oscillations. We study
two alternatives in this regard; either anticipatory control
of routing splits, which yields local stability in an arbitrary
network topology, or anticipatory price generation, which
yields a global result for the case of a network of parallel
links. Proofs are based on a Lyapunov argument. Results
are illustrated through simulations.

I. INTRODUCTION

In [12] we proposed the use of congestion prices,
generated by links and averaged recursively by nodes, as
the feedback signal on which to base the gradient control
of traffic split fractions. Primal and dual versions of
the congestion price correspond to different optimization
problems. Section Il gives some background on this
setup. In terms of stability, [12] establishes it for primal
congestion control, but it does not hold in the dual case:
as we see in Section lll, harmonic oscillations can appear
in these dynamics which are inherently of second order.
This recognition motivates us to include derivative action
in the control, aimed at damping these oscillations.

This paper contains stability studies of this kind of
control. One alternative is to add a price anticipatory
term in the control of traffic splits. This yields local
asymptotic stability of the equilibrium; Section IV in-
cludes the proof for a network of parallel links, the gen-

Recent advances on Internet congestion control basgeh| case is relayed to [13]. To obtajiobal results we
on microeconomic modeling [6], [10], [11], [15] have must deal with a switching nonlinearity: the projections
led to the development of decentralized control lawgequired to keep the vector of split fractions within the
running at traffic sources and network links, which Servenit Simp|ex_ For this study we obtain stronger results

the global objective of maximizing an overall utility.

with a second law, that includes the derivative term in

A natural continuation of this success is to incorporatgne price generation mechanism. We prove in Section IV
the degree of freedom abuting inside the network global asysmptotic stability of the welfare maximizing
as well, to jointly carry out a “cross-layer” network equilibrium, in the network of parallel links, through
Optimization. If Single-path rOUting is used as in the |Pa Lyapunov argument. In Section V we Supp|ement
protocol, this combination is not easy: the underlying opthe theory with Matlab simulations that illustrate the
timization problem is non-convex, and congestion-baseglynamics, the above-mentioned projections, and the role
route control oscillates [2], [17]. In contrast, multipathof the derivative action in stabilization. Conclusions are

routing leads to a convex multicommodity optimization,given in Section VI, and some technical lemmas are
a better candidate to combine with congestion controproved in the Appendix.

Many proposals in this regard hageurcescontrolling

the rate of multiple paths to destination [6], [5], [8],

Il. BACKGROUND

[16]. A more scalable, node-centric alternative is to \we describe here the combined framework for multi-

have routers take Charge of the multlpa’[h funCtion, bbath routing and Congestion control from [12]
controlling the traffic split fractions to each destination

among their outgoing links. This idea goes back to [4]A. Notation

[1] for inelastic source traffic; in that work the traffic

Consider a network made up of a set of nodés

split is adapted to follow the gradient of an overall cosienoted by indices, j, and a set of linksC between
function, interpreted as network delay. This approacthem, denoted by or by a directed pair of nodes, 7).

can also include “primal” flow control, as shown in [18],

The network supports various flows between source-

which also includes power control for wireless nodesdestination pairs of nodes. The indéxc K denotes
Other cross-layer work for wireless networks with thean individual flow or “commodity”, ands(k), d(k) are

node-centric view is [3], [9].

the corresponding source and destination nodes. While

Email:{mallada,paganii@ort.edu.uy. Research supported bythese are unique for eaéhwe allow the traffic to follow

PDT-Uruguay, and by AFOSR-US, grant FA9550-06-1-0511.

multiple paths between source and destination.



Let y* denote the rate (packets/sec) of flewthrough to the above recursive equations; more details are given
link 1, andz¥ the total rate of this flow entering node in [13], which also contains a protocol that implements
At the source node, we only have the external rdte  this recursion. At the source node of flaw the price

k. ( )
q" = q ,,, summarizes the congestion of the network.

i E. Dual congestion control
The flow balance equations at nodes are ¢

The dual congestion control algorithm originating in

x;‘ = Z y@-’j), J # s(k), (2a) [10] is based on the link price generation mechanism
(id)€L . N
pr="ly — aly,- (6)

o} = Z yﬁ-,j)a i # d(k). (2b) . — | Lo I ' .

(iT)er The positive prOJe_ctlor[wl]pl is deflneq to bg zero if
o w; < 0 andp; = 0: in this case the projection is said to

The total rate on link is be active otherwise, the result is;. Also, for column

= Zyl’“ (3) vectorsw p, [w];} is the element-wise projection.
In Section IV-C we will consider an anticipatory
B. Welfare optimization objective variant of the dual price generation.

The source control in dual laws is static: based on the

We associate with each commodityan increasing, . S
received price;”, the source chooses the rate

strictly concave utility functionU,(z*) that specifies
the flow’s demand for rate. We formulate the following 2F = f.(¢") 7

cross-layer optimization problem. ) . A .
that instantaneously maximizég, (z*) — ¢"«*. Hence,

Problem 1 (WELFARE)Maximize ), Ur(z¥), the demand curvef; is the inverse function of the
subject to link capacity constraints < ¢, and flow marginal utility U}, (z*). f; is strictly decreasing i/,
balance constraints (1),(2),(3). is strictly concave.

This convex program seeks the maximum achievable m
utility over all flows, if traffic is allowed to foIIovx_/ mt_JItl— GRADIENTS AND ITS INSTABILITY
ple, arbitrary routes between source and destination. We

study decentralized control laws at sources and routers 10 completely define the cross-layer decentralized
to solve this optimization. control law, we must specify how to control the routing

split vectoray := {a{, ; }i,j)ec @s a function of

. ROUTING CONTROL BASED ON PRICE

C. Control variables

d._ d
The source of flow: (the transport layer) controls the ™= v + gt agee
total ratez* that it inputs to the network. the vector of prices to destinatiahseen from node.
The router at node controls the variablex!, .., that A first choice for the control of¢ is to follow the
specifies the fraction of traffic with destlnatldnrouted negative price gradient: to transfer traffic gradually from
through outgoing link(i, 7). We thus impose more expensive to cheaper routes. One such law is

vy =Bk, () el @) af = BiEqe -], (8)

where; > 0 and E_« denotes a projection operation
required to keep the trajectory within the simplﬁx In

the special case whetf is interior to A; (a > 0Vy)

A; = {a y=0: Z a(i’j) =1} the projection must simply enforce the bafance of mass

(i,)eL -d
Yo iy =0,
j:(i,5)EL

The vectoraf := {a }agec, of dimention L;
(number of outgomg I|nks af) is in the unit simplex

D. Feedback signals

The primary feedback signal is a congestion measu(e, i meansi!
or price p; for each link! € L. Based on these link
prices, nodes construct a price-to-destinatjpni € N,
representing the average price of sending packets fro
nodes to destinationd, under current routing patterns. E=I-+1 17, 9)

Node prices are thus defined to satisfy !

must be orthogonal ta, the vector of
all ones of dlmensiomi. So in this cas&¥ . is given
tr)rY the orthogonal projection matrix '

where is the identity matrix of dimensiotd;.

QZzi =0, Applying E to a vector subtracts the mean from each
. i d o
¢ = Z adi 5 Iy +q;z]7 i #d. (5) component. So, for an mte_rmz , (8) is simply
Ik afi,) = Bilm — 7o 5):

Given link prices p(; ;), under mild assumptions of this increases routing in links with lower-than-average
connectivity stated in [4], there exist unique solutigfis prices, decreases it in the rest.



The definition of £« for points a¢ on the simplex IV. ANTICIPATORY CONTROL AND ITS STABILITY

boundary is postponed to Section IV-B. The preceding example reveals a limitation with
controlling multipath routing based on the gradient of
Proposition 1: Consider the closed loop dynamicscongestion price. The difficulty can be traced to the
defined by differential equations (6), (8), and bysecond-order nature of the dynamics (10), which behaves
relationships (4), (5), (7). At an equilibrium point, thejike a mass-spring system with no damping. How, then,
source rates are at an optimum of Problem 1. do we introduce damping in this loop? A classical idea
is to include a “derivative action” terhin either the
The proof parallels the one in [12] for primal laws: price or the split equations.
equilibrium prices are shown to be the Lagrange L L . . o
multipliers of a dual to Problem 1. Details are given i\ Derivative action in routing splits and local stability

[13]. We now see that although the dynamics has the We consider first the alternative of adding the deriva-

correct equilibrium, it is not necessarily attractive. ~ tive term in the control of routing splits, essentially
making this controlnticipatefuture prices g; > 0):
Example 1:Consider a simple network with two ad ZﬁiEag[—(WEi-FVﬂ'Tf)} (11)

nodes (source and destination) and two parallel links,
of capacityc;, co. Each link generates a price accordingNote that the equilibrium point is unchanged with re-

to (6). The traffic split can be described in this case by &pect to the previous section, since the derivative terms
single parametet := a4, with as = 1 — . An update Vanish there. Hence, an equilibrium will still solve Prob-
that follows the negative price gradient has the form lem 1; the issue is the stability of this equilibrium. We

focus here on a simple case (deferring generalizations to
& = B(p2 — p1), [13]): a network ofL parallel links between a two nodes,

each connected to the single source and destination. Let

with saturation to the interval0,1]. The equilibrium

. : C1 Y1 P1 aq
is z* = ¢1 + ¢ca, a* = ¢/, with p; = p5 = ¢* e e _ B

depending on the chosen utility function. To simplify ¢~ | 1 |> Y= || P= || @7 |
the analysis, let us temporarily replace the source by crL YL pL ar

an inelastic one with rate = 2. Also, consider a pe the vectors of link capacities, rates, prices and split
trajectory for which the saturation constraints @np1,  ratios, andg, = the scalar source variables. We have

p2 remain inactive. Denotingo = a—a*, op; = p;—p},

the dynamics becomdimear: y=za, q=a'p, z=f(g), (12

where f from (7) is strictly decreasing, anfl denotes

gpal _ %(;* _()ﬁg (;S;l . (10) transpose. The dynamics in this case are given by
dp2 —y2z* 0 0] [dp2 & = BEL[—(p +vp)], (13)

The eigenvalues of the preceding matrix dreand p:l“[y—c];, (14)
+j+/0B(71 + v2)z*. TheO eigenvalue is a consequencewherel’ = diag{v;};cz, v > 0. The equilibrium is

of having introduced the inelastic source, which makes . N N

the equilibrium price indeterminate. The purely imag- vi=at.te =) p=qal

inary mode is of more concern: it reveals a harmonic Yy =ca, o = C—i l=1,...,L. (15)
oscillation of the price and split dynamics, that can have ] ) o ]

as large an amplitude as the saturation constraints allow. e first rewrite the dynamics in incremental variables

If the elastic source is introduced back in the problemaround equilibriumgz: = 2 —2* and so on. Without loss

the dynamics is no longer linear. Nevertheless, w8’ 9enerality take;” >0 and smalldp under which no
can say the following: for the important case wherd/Ce saturation occurs. Then we have (exactly)
n= .1/c'l (i.e., price repregents gueueing delay), the op =T[oy] = T[(x — %) + z* (o — )]
Ilnearlz_atlon around_ equilibrium replac_es the mode at — T[sza + °8a]. (16)
zero with a stable eigenvalue, but the imaginary modes
remain. Moreover, through a Lyapunov analysis similar If « is interior to the unit simplexA (which happens
to Theorem 6 below (see Remark 1) we find thatocally sincea* is interior), the projection in (13) is
asymptotically the source rate must convergertoas simply given by the matrixt as in (9). Furthermore,
above, with dynamics ofr andp approaching the one Ep* = 0, so we locally rewrite (13) as

in (10), and thus exhibiting possibly large oscillations. . .

Note that it does not help to make the route adaptation 0¢ = —BE(9p + vop). (17)

“SlO}N“: .|f We reduce the paramete?, the frequen.cy of IWe acknowledge discussions with Jeff Shamma who has recently
oscillation is reduced, but the oscillations remain. promoted the use of derivative action in dynamic games [14].



Also, noting thatéa 1. 1 andp* = ¢*1, (12) yields (20) is in fact achieved for small enough> 0, for
T T T which a + €¢E,[v] becomes the point in the simplex
0g = a dop+oatp’ =atop. (18)  Closest tCDé-FE’U.[l'; o is interior toA, W (a4 ev) is for
Proposition 2: The equilibrium (15) is locally asymp- small e the orthogonal projection + e Ev, henceE,,[v]
totically stable under the dynamics (13-14), for- 0.  defaults toEv. Considered globally, howeveg, [v] is
Proof: Define the Lyapunov function candidatenot linear inv, and discontinuous (switching) .
V' > 0, vanishing only at equilibrium:

1
V(da,dp) = ;—ﬁH(Sa + BUESp||* + iépTFfl(Sp.
(19)

The derivative ofda + v Edp is equal to—GEdp from
(17); therefore the first term iV has derivative

¥ (Sa+PrESp)T (—Edp) = —a*sa’ sp—a* Br|| Edp||>.

Note for the above thab'da. = da. Now, using (16), Fig. 1. ProjectionE,.
the derivative of the second term n is

This projection satisfies the following basic lemmas:

T * _ T * T
0p” |adz + 2%d0] = (o 6p)dz + "o dp. proof is given in the Appendix.

Combining both terms and using (18) yields Lemma 4:For anyb € A, v € R, the inner product
V = —a" Bw|| Bsp|® + dqda. (b— a,v — Eql]) <0. (21)
Now sincef(q) is strictly decreasing we have Furthermore, foib interior to A, equality can only hold
. . in (21) whenE,[v] = Ew.
so V decreases along trayectories. IEa[v]||? < (Eafo],v) Va € A,veRE. (22)

The Lasalle principle (see [7]) implies convergence to
an invariant set wher& = 0. This impliesz = z* and C. Global stability with derivative action in the prices
q = ¢*. Also, due to the first term i we haveEdp = 0 A natural question is whether the dynamics (13-14) is
which meansip is parallel tol, dp(t) = dq(t)1. But  globally stabilizing. Simulation evidence indicates this is
since d¢ = 0 we havedp = 0. Finally, (16) implies the case. Furthermore, the Lyapunov argument based on
da = 0 so the invariant set is the equilibrium. V in (19) is not completely local, in the sense that it can
B handle exactly the nonlinearities in (12), and extended to
The previous argument extends to a local stabilitynclude the price projection in (14). So, for a trajectory
result for a general network, with arbitrary topology andhat avoids the boundary of the simpléx s decreasing.
multiple commodities, superimposing Lyapunov termsJnfortunately this need not occur for trajectories that
similar to (19) for each node and each commodity. Weit the boundary, and apply the projection (20). So the
state the general result, for the proof see [13]. global proof is still open.
We are able to give a positive result, nevertheless,
Theorem 3:Consider the closed loop dynamics de-by introducing derivative action in a different way in
fined by the differential equations (6) and (11), togethethe problem. We will show that the following dynamics
with the static relationships (4), (5), (7), for eaghi, & globally stabilizes the optimum equilibrium: keep the
[ in an arbitrary network. The equilibrium set (optimumgradient control of routing splits,
of Problem 1) is locally attractive, far > 0. & = BE[—p], (23)

B. Projecting dynamics on the simplex L . , )
: g%y P but add an anticipative term in the price generation:

The remainder of the section focuses global sta-
bility, for which it is essential to define the projection p="Tly—c+vdl. (24)
Eq[v] of equations (8),(13), for points on the boundaryye eynress these in incremental variables:
of A. Intuitively, E,[v] must specify the direction that
follows v most closely with motion within the simplex. dé = BE,[—0p). (25)

Formally: fora € R”, let U4 (a) := argmin,.,|a — b| 6p =[x o + a*0a + vidl} . (26)

denote the point iM\ closest toa. Now define o
For (25) note that the projectiof, removes any com-
E.[v] := lim Yalate) —a (20) ponent in the direction ofl, in particularp” = ¢*1.
e—0+ € The derivation of (26) is analogous to (16), although
An illustration of the definition is given in Figure 1. here the price projection is maintained. Also note that
Since the boundary ah is piecewise linear, the limit in relationship (18) remains valid.



Theorem 6:Under the dynamics (23-24), the equilib- Rates are controlled by = %,which amounts to using
rium (15) is globally asymptotically stable, for> 0. the utility function U (z) = log(x). We fix parameters
Proof: Define the Lyapunov function candidatec =1, I' = 7.5.10~*I, 8 = 0.02. The equilibrium is

W >0, vanishing only at equilibrium: ¥ =3, o= %1, pf=q¢*1= %1. (31)

W (b, 6p) = x—*\|5a||2 + lngp—l(;p = W,y + Ws. For the first simulation we set = 0. Figure 2
20 2 shows a trajectory ofv in the 3-dimensional simplex

The first term above has derivative A, and at each point we indicate the projected price
W, = 2* (6, Bu[—6p]). 27 vector —Ep. At the beginning the trajectory hits the

a1 = 0 boundary of the simplex, and the projection

The derivative of the second term is bounded as followsz,, acts to keep it withinA. It spends some time on the
Wo = 6pT [dza + *0a + VBE,[—0p]l boundary, reaching the vertgy, 0, 1), later returning,
< 5u7(5 ‘5 B l—s and temporarily hitting the boundany = 0. Eventually

< dp” (Owa+ 270 + VG Ea[—0p)) the trajectory settles into a limit cycle in the interior of

= 6p” (6za + x*b6a) + vB(6p, Ea|—6p)) A, similar to the earlier example with two links. Despite
< opT (dxa + x*6a) — vB||Ea[—0p]||>.  (28) this oscillation inc, the source rate and priceg, shown

in Figure 3, converge as predicted by the theory.
The first step above uses (26). The second step follows g ¢ P y y

by noting that if a linki has an active price projection,

(dxa + x*da + VBEL[—dp]); < 0 andp; = 0, hence

op; < 0. The last step invokes Lemma 5 with= —dp.
Combining (27-28) and using (18) yields

W < a*(3a,0p + Ea[~0p]) — v Eal=0p]|* + dgdu. -
(29) o
Now invoke Lemma 4, withh = o*, v = —{p, to get

(0c, 6p + Ea[=0p]) = (=(b— a), —v + Ea[v])
= (b—a,v— E,[v]) <0. (30)

Also, 6gdz < 0 as before, s3V < 0 along trayectories.

Again we invoke Lasalle to claim convergence to an  Fig. 2. «’s trajectory and negative price gradient= 0.
invariant set wherd? = 0. Under this condition, all
terms in (29) must be identically zero. In particular,
E.[-ép] = 0, and sincef(-) is strictly decreasing, Al e ]
x = x* andqg = ¢*. Also, sinceb = o* used in (30) is NN\N\/ 1
interior to A, the second part of Lemma 4 implies that ; ]
E.[-0p] = E[-0p] =0.

Therefore,op(t) is parallel tol, op(t) = dq(t)1, so
op = 0, sincedqg = 0. Thus prices are identically at
equilibrium, p = p* > 0. Finally, note from (25) that
& = 0, so (26) (note the projection is inactive) implies
da = 0. The invariant trajectory is at equilibrium. =

o 0o 0 o 0 0 0
9 b o N
T ; T

Remark 1:If we setrv = 0, i.e. there is no antici- ]
patory term in the dynamics, the Lasalle argument still ° soos s eses  meeo  wetes  wmseo
gives global convergence to = z*, as claimed in the
example of Section Ill fo, = 2; however the final step ~ Fig- 3. Source rate (top) and pricey (bottom), case’ = 0.
fails and we cannot claim asymptotic stability.

We now include the derivative term in the price
V. SIMULATIONS dynamics by setting’ = 50. We observe in Figure 4
We present some Matlab simulations to illustrate théow this damps thexv trajectory until it converges to
system dynamics, with and without the derivative actiom*. Notice how the projection-Ep is going to zero,
terms. We use for this purpose a three parallel linkmplying prices are aligning witl L A. Finally, source
network, with one flow from source to destination. rate x and source pricey (not shown) still converge
We implemented an Euler discretization of (23-24)as in the previous simulation. Thus, equilibrium (31)
(m is the discrete time indeXz]*™ = max(z, 0)): is reached.
As a final remark, we note that qualitatively similar
results are found with the control laws of Section IV-A,
Pmt1 = [Pm + T(ym — ¢) + Tv(am — am—1)]" despite the lack of a global theorem for that case.

Amp41 = Oy + ﬁEocm [7pm]7



For the second part, note that for fixedo, the inner

product in (21) isaffinein b. Assume it is zero at a point
interior to the simplex: for the inequality to hold in a
neighborhood of this point requires that it be identically
zero inb € A (otherwise, it would change sign in the
neighborhood). But then the vector— E,[v] must be
orthogonal to the plane of the simplex, 8 = E,[v].

B. Proof of Lemma 5
Apply (32) toa = a + ev, b = «, and divide both

terms bye > 0 (preserving inequality) to get

Fig. 4. «’s trajectory and negative price gradient—= 50

<

Taking limit with e — 0+ and using (20) yields

VI. CONCLUSIONS ANDFUTURE WORK

The global stability of both primal and dual conges-
tion control for fixed routing has been known for some

time. We have studied its combination with controlledyhich implies (22).

multipath routing. While adapting the traffic splits
based on the price gradient is stabilizing when com-
bined with primal congestion control [12], in the dual 0
case the dynamics can be oscillatory. We have studied1L
stabilization based on derivative action in the control.
Two alternative places to add the anticipative term!4]
. . . ! [3]
are the control of routing splits, or the link price control.
Both give local asymptotic stability around the optimum,
but only for the latter have we obtained a global result,*
in a simple topology. Global stability for the alternative
of Section IV-A, which has the most general local results[5]
and is the most attractive for implementation in a large
network (see [13]), remains open for future research.
APPENDIX: PROOF OFLEMMAS 1

A. Proof of Lemma 4 7]

We use the following property of the approximation [€]
operation¥ 5 (see [14] and references therein, and the

illustration in Figure 5): [0

(b—Ta(a),a—Ta(a)) <0 Vbe A,acRE (32
[10]
[11]
[12]
[13]
[14]

Fig. 5. Property of approximatiod .

Apply it to a = a + ev, and anyb € A, and divide [15]
the second term by > 0 preserving inequality. Then, 1]
a+ev—Ua(a+ ev) [17]

<b\I/A(a+ev), > <0.
€

Taking limit with e — 0+, the first term converges to [18]

b— ¥a(a) =b—a, and the second to — E,[v] from

(20). So we have (21).

a—Uala+ev) atev—TVala+ ev)

, ) <o
€ €

(=Ealv],v = Eqfv]) <0,
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