
Stability of node-based multipath routing and dual congestioncontrol

Enrique Mallada and Fernando Paganini
Universidad ORT,

Montevideo, Uruguay.

Abstract— This paper considers a network flow control
problem where routing and input rates are controlled in a
decentralized way across a network, to optimize a global
welfare objective. We build on our recent work which
combines “dual” congestion control for the traffic sources,
with multipath routing at the router nodes, controlling the
traffic split among outgoing links based on downstream
congestion prices. The challenge is to obtain stabilization
of the optimum point; in fact, controlling the split fractions
following the price gradient has the correct equilibrium,
but can lead to oscillatory instabilities. This suggests the
use of derivative action to damp such oscillations. We study
two alternatives in this regard; either anticipatory control
of routing splits, which yields local stability in an arbitrary
network topology, or anticipatory price generation, which
yields a global result for the case of a network of parallel
links. Proofs are based on a Lyapunov argument. Results
are illustrated through simulations.

I. I NTRODUCTION

Recent advances on Internet congestion control based
on microeconomic modeling [6], [10], [11], [15] have
led to the development of decentralized control laws
running at traffic sources and network links, which serve
the global objective of maximizing an overall utility.

A natural continuation of this success is to incorporate
the degree of freedom ofrouting inside the network
as well, to jointly carry out a “cross-layer” network
optimization. If single-path routing is used as in the IP
protocol, this combination is not easy: the underlying op-
timization problem is non-convex, and congestion-based
route control oscillates [2], [17]. In contrast, multipath
routing leads to a convex multicommodity optimization,
a better candidate to combine with congestion control.
Many proposals in this regard havesourcescontrolling
the rate of multiple paths to destination [6], [5], [8],
[16]. A more scalable, node-centric alternative is to
have routers take charge of the multipath function, by
controlling the traffic split fractions to each destination
among their outgoing links. This idea goes back to [4],
[1] for inelastic source traffic; in that work the traffic
split is adapted to follow the gradient of an overall cost
function, interpreted as network delay. This approach
can also include “primal” flow control, as shown in [18],
which also includes power control for wireless nodes.
Other cross-layer work for wireless networks with the
node-centric view is [3], [9].
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In [12] we proposed the use of congestion prices,
generated by links and averaged recursively by nodes, as
the feedback signal on which to base the gradient control
of traffic split fractions. Primal and dual versions of
the congestion price correspond to different optimization
problems. Section II gives some background on this
setup. In terms of stability, [12] establishes it for primal
congestion control, but it does not hold in the dual case:
as we see in Section III, harmonic oscillations can appear
in these dynamics which are inherently of second order.
This recognition motivates us to include derivative action
in the control, aimed at damping these oscillations.

This paper contains stability studies of this kind of
control. One alternative is to add a price anticipatory
term in the control of traffic splits. This yields local
asymptotic stability of the equilibrium; Section IV in-
cludes the proof for a network of parallel links, the gen-
eral case is relayed to [13]. To obtainglobal results we
must deal with a switching nonlinearity: the projections
required to keep the vector of split fractions within the
unit simplex. For this study we obtain stronger results
with a second law, that includes the derivative term in
the price generation mechanism. We prove in Section IV
global asysmptotic stability of the welfare maximizing
equilibrium, in the network of parallel links, through
a Lyapunov argument. In Section V we supplement
the theory with Matlab simulations that illustrate the
dynamics, the above-mentioned projections, and the role
of the derivative action in stabilization. Conclusions are
given in Section VI, and some technical lemmas are
proved in the Appendix.

II. BACKGROUND

We describe here the combined framework for multi-
path routing and congestion control from [12].

A. Notation

Consider a network made up of a set of nodesN ,
denoted by indicesi, j, and a set of linksL between
them, denoted byl or by a directed pair of nodes(i, j).

The network supports various flows between source-
destination pairs of nodes. The indexk ∈ K denotes
an individual flow or “commodity”, ands(k), d(k) are
the corresponding source and destination nodes. While
these are unique for eachk, we allow the traffic to follow
multiple paths between source and destination.



Let yk
l denote the rate (packets/sec) of flowk through

link l, andxk
i the total rate of this flow entering nodei.

At the source node, we only have the external ratexk,

xk
s(k) = xk. (1)

The flow balance equations at nodes are

xk
j =

∑

(i,j)∈L

yk
(i,j), j 6= s(k), (2a)

xk
i =

∑

(i,j)∈L

yk
(i,j), i 6= d(k). (2b)

The total rate on linkl is

yl =
∑

k

yk
l . (3)

B. Welfare optimization objective

We associate with each commodityk an increasing,
strictly concave utility functionUk(xk) that specifies
the flow’s demand for rate. We formulate the following
cross-layer optimization problem.

Problem 1 (WELFARE):Maximize
∑

k Uk(xk),
subject to link capacity constraintsyl ≤ cl, and flow
balance constraints (1),(2),(3).

This convex program seeks the maximum achievable
utility over all flows, if traffic is allowed to follow multi-
ple, arbitrary routes between source and destination. We
study decentralized control laws at sources and routers
to solve this optimization.

C. Control variables

The source of flowk (the transport layer) controls the
total ratexk that it inputs to the network.

The router at nodei controls the variableαd
(i,j), that

specifies the fraction of traffic with destinationd, routed
through outgoing link(i, j). We thus impose

yk
(i,j) = α

d(k)
(i,j)x

k
i , (i, j) ∈ L. (4)

The vector αd
i := {αd

(i,j)}(i,j)∈L, of dimention Li

(number of outgoing links ati) is in the unit simplex

∆i = {αd
(i,j) ≥ 0 :

∑

(i,j)∈L

αd
(i,j) = 1}.

D. Feedback signals

The primary feedback signal is a congestion measure
or price pl for each link l ∈ L. Based on these link
prices, nodes construct a price-to-destinationqd

i , i ∈ N ,
representing the average price of sending packets from
nodei to destinationd, under current routing patterns.

Node prices are thus defined to satisfy

qd
d = 0,

qd
i =

∑

(i,j)∈L

αd
(i,j)[p(i,j) + qd

j ], i 6= d. (5)

Given link prices p(i,j), under mild assumptions of
connectivity stated in [4], there exist unique solutionsqd

i

to the above recursive equations; more details are given
in [13], which also contains a protocol that implements
this recursion. At the source node of flowk, the price
qk := q

d(k)
s(k) summarizes the congestion of the network.

E. Dual congestion control

The dual congestion control algorithm originating in
[10] is based on the link price generation mechanism

ṗl = γl[yl − cl]
+
pl

. (6)

The positive projection[wl]
+
pl

is defined to be zero if
wl < 0 andpl = 0: in this case the projection is said to
be active; otherwise, the result iswl. Also, for column
vectorsw p, [w]+p is the element-wise projection.

In Section IV-C we will consider an anticipatory
variant of the dual price generation.

The source control in dual laws is static: based on the
received priceqk, the source chooses the rate

xk = fk(qk) (7)

that instantaneously maximizesUk(xk) − qkxk. Hence,
the demand curvefk is the inverse function of the
marginal utility U ′

k(xk). fk is strictly decreasing ifUk

is strictly concave.

III. ROUTING CONTROL BASED ON PRICE

GRADIENTS AND ITS INSTABILITY

To completely define the cross-layer decentralized
control law, we must specify how to control the routing
split vectorαd

i := {αd
(i,j)}(i,j)∈L as a function of

πd
i := {p(i,j) + qd

j }(i,j)∈L,

the vector of prices to destinationd seen from nodei.
A first choice for the control ofαd

i is to follow the
negative price gradient: to transfer traffic gradually from
more expensive to cheaper routes. One such law is

α̇d
i = βiEαd

i

[−πd
i ], (8)

whereβi > 0 and Eαd

i

denotes a projection operation
required to keep the trajectory within the simplex∆i. In
the special case whenαd

i is interior to ∆i (αd
(i,j) > 0 ∀j)

the projection must simply enforce the balance of mass
∑

j:(i,j)∈L

α̇d
(i,j) = 0,

which meansα̇d
i must be orthogonal to1, the vector of

all ones of dimensionLi. So in this caseEαd

i

is given
by the orthogonal projection matrix

E = I −
1

Li

1 · 1T , (9)

whereI is the identity matrix of dimensionLi.
Applying E to a vector subtracts the mean from each

component. So, for an interiorαd
i , (8) is simply

α̇d
(i,j) = βi(πd

i − πd
(i,j));

this increases routing in links with lower-than-average
prices, decreases it in the rest.



The definition ofEαd

i

for points αd
i on the simplex

boundary is postponed to Section IV-B.

Proposition 1: Consider the closed loop dynamics
defined by differential equations (6), (8), and by
relationships (4), (5), (7). At an equilibrium point, the
source rates are at an optimum of Problem 1.

The proof parallels the one in [12] for primal laws:
equilibrium prices are shown to be the Lagrange
multipliers of a dual to Problem 1. Details are given in
[13]. We now see that although the dynamics has the
correct equilibrium, it is not necessarily attractive.

Example 1:Consider a simple network with two
nodes (source and destination) and two parallel links,
of capacityc1, c2. Each link generates a price according
to (6). The traffic split can be described in this case by a
single parameterα := α1, with α2 = 1 − α. An update
that follows the negative price gradient has the form

α̇ = β(p2 − p1),

with saturation to the interval[0, 1]. The equilibrium
is x∗ = c1 + c2, α∗ = c1/x∗, with p∗1 = p∗2 = q∗

depending on the chosen utility function. To simplify
the analysis, let us temporarily replace the source by
an inelastic one with ratex ≡ x∗. Also, consider a
trajectory for which the saturation constraints onα, p1,
p2 remain inactive. Denotingδα = α−α∗, δpi = pi−p∗i ,
the dynamics becomeslinear:





δα̇
δṗ1

δṗ2



 =





0 −β β
γ1x

∗ 0 0
−γ2x

∗ 0 0









δα
δp1

δp2



 . (10)

The eigenvalues of the preceding matrix are0 and
±j

√

β(γ1 + γ2)x∗. The 0 eigenvalue is a consequence
of having introduced the inelastic source, which makes
the equilibrium price indeterminate. The purely imag-
inary mode is of more concern: it reveals a harmonic
oscillation of the price and split dynamics, that can have
as large an amplitude as the saturation constraints allow.

If the elastic source is introduced back in the problem,
the dynamics is no longer linear. Nevertheless, we
can say the following: for the important case where
γl = 1/cl (i.e., price represents queueing delay), the
linearization around equilibrium replaces the mode at
zero with a stable eigenvalue, but the imaginary modes
remain. Moreover, through a Lyapunov analysis similar
to Theorem 6 below (see Remark 1) we find that
asymptotically the source rate must converge tox∗ as
above, with dynamics ofα and p approaching the one
in (10), and thus exhibiting possibly large oscillations.
Note that it does not help to make the route adaptation
“slow”: if we reduce the parameterβ, the frequency of
oscillation is reduced, but the oscillations remain.

IV. A NTICIPATORY CONTROL AND ITS STABILITY

The preceding example reveals a limitation with
controlling multipath routing based on the gradient of
congestion price. The difficulty can be traced to the
second-order nature of the dynamics (10), which behaves
like a mass-spring system with no damping. How, then,
do we introduce damping in this loop? A classical idea
is to include a “derivative action” term1 in either the
price or the split equations.

A. Derivative action in routing splits and local stability

We consider first the alternative of adding the deriva-
tive term in the control of routing splits, essentially
making this controlanticipatefuture prices (νi > 0):

α̇d
i = βiEαd

i

[−(πd
i + νiπ̇

d
i )]. (11)

Note that the equilibrium point is unchanged with re-
spect to the previous section, since the derivative terms
vanish there. Hence, an equilibrium will still solve Prob-
lem 1; the issue is the stability of this equilibrium. We
focus here on a simple case (deferring generalizations to
[13]): a network ofL parallel links between a two nodes,
each connected to the single source and destination. Let

c =







c1

...
cL






, y =







y1

...
yL






, p =







p1

...
pL






, α =







α1

...
αL







be the vectors of link capacities, rates, prices and split
ratios, andq, x the scalar source variables. We have

y = xα, q = αT p, x = f(q), (12)

wheref from (7) is strictly decreasing, andT denotes
transpose. The dynamics in this case are given by

α̇ = βEα[−(p + νṗ)], (13)

ṗ = Γ[y − c]+p , (14)

whereΓ = diag{γl}l∈L, ν > 0. The equilibrium is

x∗ = c1 + . . . + cL = f(q∗), p∗ = q∗1,

y∗
l = cl, α∗

l =
cl

x∗
l = 1, . . . , L. (15)

We first rewrite the dynamics in incremental variables
around equilibrium,δx = x−x∗ and so on. Without loss
of generality takeq∗ > 0 and smallδp under which no
price saturation occurs. Then we have (exactly)

δṗ = Γ[δy] = Γ[(x − x∗)α + x∗(α − α∗)]

= Γ[δxα + x∗δα]. (16)

If α is interior to the unit simplex∆ (which happens
locally sinceα∗ is interior), the projection in (13) is
simply given by the matrixE as in (9). Furthermore,
Ep∗ = 0, so we locally rewrite (13) as

δα̇ = −βE(δp + νδṗ). (17)

1We acknowledge discussions with Jeff Shamma who has recently
promoted the use of derivative action in dynamic games [14].



Also, noting thatδα ⊥ 1 andp∗ = q∗1, (12) yields

δq = αT δp + δαT p∗ = αT δp. (18)

Proposition 2: The equilibrium (15) is locally asymp-
totically stable under the dynamics (13-14), forν > 0.

Proof: Define the Lyapunov function candidate
V ≥ 0, vanishing only at equilibrium:

V (δα, δp) =
x∗

2β
‖δα + βνEδp‖2 +

1

2
δpT Γ−1δp.

(19)

The derivative ofδα +βνEδp is equal to−βEδp from
(17); therefore the first term inV has derivative

x∗(δα+βνEδp)T (−Eδp) = −x∗δαT δp−x∗βν‖Eδp‖2.

Note for the above thatEδα = δα. Now, using (16),
the derivative of the second term inV is

δpT [αδx + x∗δα] = (αT δp)δx + x∗δαT δp.

Combining both terms and using (18) yields

V̇ = −x∗βν‖Eδp‖2 + δqδx.

Now sincef(q) is strictly decreasing we have

δqδx = (q − q∗)(f(q) − f(q∗)) ≤ 0,

so V decreases along trayectories.
The Lasalle principle (see [7]) implies convergence to

an invariant set wherėV ≡ 0. This impliesx ≡ x∗ and
q ≡ q∗. Also, due to the first term iṅV we haveEδp ≡ 0
which meansδp is parallel to1, δp(t) = δq(t)1. But
since δq ≡ 0 we haveδp ≡ 0. Finally, (16) implies
δα ≡ 0 so the invariant set is the equilibrium.

The previous argument extends to a local stability
result for a general network, with arbitrary topology and
multiple commodities, superimposing Lyapunov terms
similar to (19) for each node and each commodity. We
state the general result, for the proof see [13].

Theorem 3:Consider the closed loop dynamics de-
fined by the differential equations (6) and (11), together
with the static relationships (4), (5), (7), for eachi, d, k
l in an arbitrary network. The equilibrium set (optimum
of Problem 1) is locally attractive, forν > 0.

B. Projecting dynamics on the simplex

The remainder of the section focuses onglobal sta-
bility, for which it is essential to define the projection
Eα[v] of equations (8),(13), for points on the boundary
of ∆. Intuitively, Eα[v] must specify the direction that
follows v most closely with motion within the simplex.
Formally: for a ∈ R

L, let Ψ∆(a) := argminb∈∆|a − b|
denote the point in∆ closest toa. Now define

Eα[v] := lim
ǫ→0+

Ψ∆(α + ǫv) − α

ǫ
. (20)

An illustration of the definition is given in Figure 1.
Since the boundary of∆ is piecewise linear, the limit in

(20) is in fact achieved for small enoughǫ > 0, for
which α + ǫEα[v] becomes the point in the simplex
closest toα+ǫv. If α is interior to∆, Ψ∆(α+ǫv) is for
small ǫ the orthogonal projectionα+ ǫEv, henceEα[v]
defaults toEv. Considered globally, however,Eα[v] is
not linear inv, and discontinuous (switching) inα.

Fig. 1. ProjectionEα.

This projection satisfies the following basic lemmas:
proof is given in the Appendix.

Lemma 4:For anyb ∈ ∆, v ∈ R
L, the inner product

〈b − α, v − Eα[v]〉 ≤ 0. (21)

Furthermore, forb interior to ∆, equality can only hold
in (21) whenEα[v] = Ev.

Lemma 5:

‖Eα[v]‖2 ≤ 〈Eα[v], v〉 ∀α ∈ ∆, v ∈ R
L. (22)

C. Global stability with derivative action in the prices

A natural question is whether the dynamics (13-14) is
globallystabilizing. Simulation evidence indicates this is
the case. Furthermore, the Lyapunov argument based on
V in (19) is not completely local, in the sense that it can
handle exactly the nonlinearities in (12), and extended to
include the price projection in (14). So, for a trajectory
that avoids the boundary of the simplex,V is decreasing.
Unfortunately this need not occur for trajectories that
hit the boundary, and apply the projection (20). So the
global proof is still open.

We are able to give a positive result, nevertheless,
by introducing derivative action in a different way in
the problem. We will show that the following dynamics
globally stabilizes the optimum equilibrium: keep the
gradient control of routing splits,

α̇ = βEα[−p], (23)

but add an anticipative term in the price generation:

ṗ = Γ[y − c + να̇]+p . (24)

We express these in incremental variables:

δα̇ = βEα[−δp]. (25)

δṗ = Γ[δx α + x∗δα + νδα̇]+p . (26)

For (25) note that the projectionEα removes any com-
ponent in the direction of1, in particular p∗ = q∗1.
The derivation of (26) is analogous to (16), although
here the price projection is maintained. Also note that
relationship (18) remains valid.



Theorem 6:Under the dynamics (23-24), the equilib-
rium (15) is globally asymptotically stable, forν > 0.

Proof: Define the Lyapunov function candidate
W ≥ 0, vanishing only at equilibrium:

W (δα, δp) =
x∗

2β
‖δα‖2 +

1

2
δpT Γ−1δp =: W1 + W2.

The first term above has derivative

Ẇ1 = x∗〈δα,Eα[−δp]〉. (27)

The derivative of the second term is bounded as follows:

Ẇ2 = δpT [δxα + x∗δα + νβEα[−δp]]+p

≤ δpT (δxα + x∗δα + νβEα[−δp])

= δpT (δxα + x∗δα) + νβ〈δp,Eα[−δp]〉

≤ δpT (δxα + x∗δα) − νβ‖Eα[−δp]‖2. (28)

The first step above uses (26). The second step follows
by noting that if a linkl has an active price projection,
(δxα + x∗δα + νβEα[−δp])l ≤ 0 and pl = 0, hence
δpl ≤ 0. The last step invokes Lemma 5 withv = −δp.

Combining (27-28) and using (18) yields

Ẇ ≤ x∗〈δα, δp + Eα[−δp]〉 − νβ‖Eα[−δp]‖2 + δqδx.
(29)

Now invoke Lemma 4, withb = α∗, v = −δp, to get

〈δα, δp + Eα[−δp]〉 = 〈−(b − α),−v + Eα[v]〉

= 〈b − α, v − Eα[v]〉 ≤ 0. (30)

Also, δqδx ≤ 0 as before, soẆ ≤ 0 along trayectories.
Again we invoke Lasalle to claim convergence to an

invariant set whereẆ ≡ 0. Under this condition, all
terms in (29) must be identically zero. In particular,
Eα[−δp] ≡ 0, and sincef(·) is strictly decreasing,
x ≡ x∗ and q ≡ q∗. Also, sinceb = α∗ used in (30) is
interior to ∆, the second part of Lemma 4 implies that
Eα[−δp] ≡ E[−δp] ≡ 0.

Therefore,δp(t) is parallel to1, δp(t) = δq(t)1, so
δp ≡ 0, since δq ≡ 0. Thus prices are identically at
equilibrium, p ≡ p∗ > 0. Finally, note from (25) that
α̇ ≡ 0, so (26) (note the projection is inactive) implies
δα ≡ 0. The invariant trajectory is at equilibrium.

Remark 1: If we set ν = 0, i.e. there is no antici-
patory term in the dynamics, the Lasalle argument still
gives global convergence tox ≡ x∗, as claimed in the
example of Section III forL = 2; however the final step
fails and we cannot claim asymptotic stability.

V. SIMULATIONS

We present some Matlab simulations to illustrate the
system dynamics, with and without the derivative action
terms. We use for this purpose a three parallel link
network, with one flow from source to destination.

We implemented an Euler discretization of (23-24)
(m is the discrete time index,[z]+ = max(z, 0)):

αm+1 = αm + βEαm
[−pm],

pm+1 = [pm + Γ(ym − c) + Γν(αm − αm−1)]
+.

Rates are controlled byx = 1
q
,which amounts to using

the utility function U(x) = log(x). We fix parameters
c = 1, Γ = 7.5.10−4I, β = 0.02. The equilibrium is

x∗ = 3, α∗ = 1
31, p∗ = q∗1 = 1

31. (31)

For the first simulation we setν = 0. Figure 2
shows a trajectory ofα in the 3-dimensional simplex
∆, and at each point we indicate the projected price
vector −Ep. At the beginning the trajectory hits the
α1 = 0 boundary of the simplex, and the projection
Eα acts to keep it within∆. It spends some time on the
boundary, reaching the vertex(0, 0, 1), later returning,
and temporarily hitting the boundaryα3 = 0. Eventually
the trajectory settles into a limit cycle in the interior of
∆, similar to the earlier example with two links. Despite
this oscillation inα, the source ratex and priceq, shown
in Figure 3, converge as predicted by the theory.
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Fig. 2. α’s trajectory and negative price gradient,ν = 0.
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Fig. 3. Source ratex (top) and priceq (bottom), caseν = 0.

We now include the derivative term in the price
dynamics by settingν = 50. We observe in Figure 4
how this damps theα trajectory until it converges to
α∗. Notice how the projection−Ep is going to zero,
implying prices are aligning with1⊥∆. Finally, source
rate x and source priceq (not shown) still converge
as in the previous simulation. Thus, equilibrium (31)
is reached.

As a final remark, we note that qualitatively similar
results are found with the control laws of Section IV-A,
despite the lack of a global theorem for that case.
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Fig. 4. α’s trajectory and negative price gradient,ν = 50

VI. CONCLUSIONS ANDFUTURE WORK

The global stability of both primal and dual conges-
tion control for fixed routing has been known for some
time. We have studied its combination with controlled
multipath routing. While adapting the traffic splitsα
based on the price gradient is stabilizing when com-
bined with primal congestion control [12], in the dual
case the dynamics can be oscillatory. We have studied
stabilization based on derivative action in the control.

Two alternative places to add the anticipative term
are the control of routing splits, or the link price control.
Both give local asymptotic stability around the optimum,
but only for the latter have we obtained a global result,
in a simple topology. Global stability for the alternative
of Section IV-A, which has the most general local results
and is the most attractive for implementation in a large
network (see [13]), remains open for future research.

APPENDIX: PROOF OFLEMMAS

A. Proof of Lemma 4

We use the following property of the approximation
operationΨ∆ (see [14] and references therein, and the
illustration in Figure 5):

〈b − Ψ∆(a), a − Ψ∆(a)〉 ≤ 0 ∀b ∈ ∆, a ∈ R
L. (32)

Fig. 5. Property of approximationΨ∆.

Apply it to a = α + ǫv, and anyb ∈ ∆, and divide
the second term byǫ > 0 preserving inequality. Then,

〈

b − Ψ∆(α + ǫv),
α + ǫv − Ψ∆(α + ǫv)

ǫ

〉

≤ 0.

Taking limit with ǫ → 0+, the first term converges to
b − Ψ∆(α) = b − α, and the second tov − Eα[v] from
(20). So we have (21).

For the second part, note that for fixedv, α, the inner
product in (21) isaffinein b. Assume it is zero at a point
interior to the simplex: for the inequality to hold in a
neighborhood of this point requires that it be identically
zero in b ∈ ∆ (otherwise, it would change sign in the
neighborhood). But then the vectorv − Eα[v] must be
orthogonal to the plane of the simplex, soEv = Eα[v].

B. Proof of Lemma 5

Apply (32) to a = α + ǫv, b = α, and divide both
terms byǫ > 0 (preserving inequality) to get

〈

α − Ψ∆(α + ǫv)

ǫ
,
α + ǫv − Ψ∆(α + ǫv)

ǫ

〉

≤ 0.

Taking limit with ǫ → 0+ and using (20) yields

〈−Eα[v], v − Eα[v]〉 ≤ 0,

which implies (22).
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