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Abstract—In this paper, we propose a novel approach for the
traffic engineering in computer networks with uncertain demand.
By utilizing the different flexibility of network reconfiguration
and characteristics of traffic demand in different timescales, we
solve the network provisioning and routing problems through
stochastic optimizations and their second-order cone program-
ming approximations. Numerical illustration shows that our
approach can reduce 25% of the network cost compared with
the traditional traffic engineering solution.

I. INTRODUCTION

Traditionally, network operators handle traffic fluctuations
in the networks by reserving redundant capacity on each link
based on their empirical experience. Naturally, the reservation
of capacity has to be quite conservative. As both the mean
and variation of the Internet traffic grow, this approach would
become less and less cost effective. To lower the operating
cost, network operators are looking for better solutions to ac-
commodate the traffic uncertainty and guarantee their service
level agreements (SLA) while avoiding over-provisioning.

Most previous researches on traffic engineering with uncer-
tain traffic demands can be mainly categorized into two types:
The first is commonly referred to as oblivious routing, a static
routing strategy that is robust to traffic change. In the extreme
case, [1] showed how to construct an oblivious routing such
that the performance of this universal solution is not too far
away from optimality under any traffic demand. Obviously,
the performance can be improved if we have more informa-
tion on the traffic demand, and many algorithms have been
proposed based on different constraints on the traffic demand,
such as the Hose model [2] where the maximum incoming
and outgoing traffic of each node is given, or the possible
traffic demands are confined by some polyhedron [3], or the
demands are divided into common and unexpected scenarios
and treated separately during optimization [4]. There are also
stochastic approaches such as [5] that maximize the mean
of certain traffic engineering objective assuming the traffic
demand is subject to some probability distribution. In general,
these oblivious routing approaches can guarantee worst-case
performance under a large range of traffic conditions, but the
incurred cost is relatively high. For example, in the original
oblivious routing approach [1], the oblivious ratio is around 2
for typical networks, which means that the oblivious routing
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can handle only 50% of the traffic demand the best possible
routing solution can support.

The second type of approaches is to develop responsive
strategies that update the routing configuration to adapt the
realtime traffic demand, such as [6], [7]. Ideally, the timescale
of updating should be as fast as possible to make sure that
the network configuration is always optimal for the current
demand. However, especially in backbone networks, due to
factors such as link propagation delay and imperfect demand
measurement, routing reconfiguration has to be done at a much
slower timescale where all the above factors can be ignored,
thus limiting the performance of these dynamic network con-
trol algorithms.

In this paper, we propose a novel traffic engineering method-
ology that combines the ideas from both oblivious routing
and dynamic routing1 by utilizing the different flexibility of
network reconfiguration and characteristics of traffic demand
in different timescales: (i) At the long-term timescale, typically
within the interval of a few months, the network operators can
freely reconfigure the network, such as adding or removing
links, changing the link capacity or adjusting the routes. On
the other hand, the available information on the demand side
is very limited in this stage. (ii) At the short-term timescale
approximately from an hour to several minutes, since there
is no switching between different workdays or between peak
and off-peak hours, the seasonal component of traffic variation
influenced by human activities does not exist. Thus the traffic
demand is much more stable compared with the demand
in the long-term timescale. However, at this timescale the
reconfiguration of the network is also restricted. For example,
it is nearly impossible to change the network topology or link
capacities. But with the advance of software-defined network
technologies, the routes and split ratio of traffic can still be
adjusted to optimize the network performance. (iii) Finally, at
the even faster timescale of seconds or below, as we discussed
above, the complex transient behaviors forbid any updates to
the network configuration. Therefore, even assuming that the
traffic demand could be measured instantly (which itself is
not an easy job), the most complete information given at this
timescale is of little help to the network optimization.

1There are other ways to combine the oblivious routing and the dynamic
routing, such as [8] which uses oblivious routing to select the available paths
and dynamic routing to determine the sending rates on each path.



Roughly speaking, at slower timescales, our approach is
closer to the dynamic routing, where we adaptively change
the network configuration but do not need to deal with the
transient issues. On the contrary, at faster timescales, our
approach is closer to the oblivious routing, where we use a
single routing solution to handle all the traffic fluctuations. But
at this time, the traffic demand is relatively predictable and the
needed reserved capacities can be reduced. Since the decision
made at slower timescales will affect the available decision
region and attainable performance in the faster timescales, we
model the traffic engineering problem as a joint optimization
across the three timescales.

This paper is organized as follows: We introduce the
network and traffic model in Section II and formulate the
traffic engineering problem as stochastic optimizations across
the above three timescales in Section III. In Section IV, we
propose an approximate algorithm to solve the optimization
problems by convexifying the original ones. Finally, in Sec-
tion V, we illustrate the effectiveness of our method using a
sample backbone network.

II. NETWORK AND TRAFFIC MODEL

We consider a network with L uni-directional links in which
the capacity of link l is cl. There are N types of traffic demand,
and each demand i has Ki available paths from its source to its
destination. In this paper, we assume that the set of available
paths for the demand is predetermined.2 The available paths
of demand i are represented by an L×Ki matrix Ri, where
Ri

lk = 1 if path k of demand i passes through link l and
Ri

lk = 0 otherwise.
For a given demand i, its traffic volume is denoted as Di(t),

modeled as a random process described in the following. The
split ratio vector αi is of size Ki× 1, where the kth entry αi

k

is the percentage of traffic that will be routed on its path k.
We adopt the temporal traffic model presented in [9]. In

this model, the traffic volume Di(t) is characterized by the
following three components:3

• The long-term trend Li(t).
• The seasonal component Si(t).
• The random fluctuations W i(t).

The long-term trend Li(t) captures the overall growth of traffic
over a long time period induced by increasing network speed
and number of networking devices. The seasonal component
Si(t) is a periodic function influenced by human activities.
W i(t) is a random process of zero mean and unit variance,
and the fluctuations of different traffic demands are assumed
to be independent from each other. The total traffic volume is
given by

Di(t) = Li(t)Si(t) +
√
aiLi(t)Si(t)W i(t), (1)

where ai is a constant called the peakedness of the traffic.

2For instance, the SLA may require the network operator to route the
demand on paths whose latency is at most 110% of that on the shortest path.

3In [9], there is another anomaly component capturing the spikes caused
by rare events such as link failures and network attacks, which is outside the
scope of this paper.

TABLE I
CHARACTERISTICS OF THE THREE TIMESCALES IN NETWORK

OPTIMIZATION

Timescale Typical
Granularity Known Information Decision

Variables
Long-term A month Li(t) cl, αi

k
Short-term An hour Li(t), Si(t) αi

k
Transient A second Li(t), Si(t), W i(t) None

The three timescales for the network optimization are
summarized in Table I. If the value of a random process
belongs to the known information of a given timescale, it will
be regarded as a constant when we solve the corresponding
optimization problem at that timescale. In this paper, W i(t)
is further assumed to be a white Gaussian process. Moreover,
due to the slowly varying and periodic behavior of the seasonal
component, we can approximate the functions Si(t) by Q
scenarios, i.e.,

Si(t) = Si
q(t), i = 1, . . . , N,

where q(t) is a periodic and piecewise constant function whose
value is an integer between 1 and Q. For instance, if the period
of Si(t) is 24 hours, then Q is equal to 24 and Si

q represents
the average traffic volume of demand i on hour q.

III. STOCHASTIC NETWORK OPTIMIZATION

In this part, we propose the network optimization problem
related to each timescale. As assumed above, there is no
available control action and thus no optimization problem at
the transient timescale. At the short-term timescale, the link
capacities cl are fixed, and the goal of the network operator
is to find a routing configuration αi

k on which the network
can run smoothly under traffic fluctuations in the transient
timescale. At the long-term timescale, the objective is to
design the link capacities cl minimizing the network cost.
On the other hand, it is not necessary to decide the routing
configuration αi

k at this moment since it can be changed at
the short-term timescale. Instead, we only need to guarantee
the existence of routing configuration αi

k,q for each possible
scenario q satisfying the performance requirement.

A. Short-Term Optimization

We start from the easier problem of optimizing the net-
work at the short-term timescale. Based on our cross-layer
optimization methodology, we want to design the routing for
the demands such that with a high probability the traffic
fluctuations in the transient timescale can be handled using
the fixed link capacities that have already been allocated at
the long-term timescale. To do this, we first need to model
the network behavior at the transient timescale.

For simplicity, we describe the network state at the transient
timescale by a quasi-static model that ignores the effect of
buffers and propagation delays. At some instant, the traffic
volume Di is a Gaussian random variable whose mean and
variance can be obtained from (1) and the given values of the



long-term trend Li and the seasonal component Si. Given the
split ratio αi

k, the actual traffic Yl on link l is

Yl =

N∑
i=1

Ki∑
k=1

Ri
lkα

i
kD

i.

The short-term network optimization problem is to mini-
mize the probability of SLA violations, which can be defined
as the probability of the event that the capacity of some link
is exceeded. The complete short-term network optimization
problem can be written as

min Pr

(
L⋃

l=1

{Yl > cl}

)

s. t.

Ki∑
k=1

αi
k = 1, ∀i = 1, . . . , N,

αi
k ≥ 0, ∀i = 1, . . . , N, k = 1, . . . ,Ki.

(2)

B. Long-Term Optimization

At the long-term timescale, the only information known to
the operator is the long-term traffic trend term Li, and the goal
is to choose the link capacities such that the network cost is
minimized while the SLA will not be breached in most of the
time. However, the split ratios αi

k do not need to be decided
at this moment, because in the later they can be updated to
the optimal solution to the short-term optimization problem
(2) when the value of the seasonal component Si becomes
known.

Mathematically, let ε be a constant representing the max-
imum acceptable probability of SLA violation. For each
scenario q, we have to ensure that there are suitable split
ratios αi

k,q such that the corresponding violation probability
is bounded by ε. Suppose the link capacities have a linear
cost function, where pl is the cost of link l per unit capacity,
then the long-term optimization problem can be formulated as

min

L∑
l=1

plcl

s. t. Pr

(
L⋃

l=1

{Yl,q > cl}

)
≤ ε, ∀q = 1, . . . , Q,

Ki∑
k=1

αi
k,q = 1, ∀i = 1, . . . , N, q = 1, . . . , Q,

αi
k,q ≥ 0, ∀i = 1, . . . , N, k = 1, . . . ,Ki,

q = 1, . . . , Q,

(3)

where

Yl,q =

N∑
i=1

Ki∑
k=1

Ri
lkα

i
k,qD

i
q

and Di
q , the traffic volume in scenario q, is a Gaussian random

variable whose mean di,q and variance σ2
i,q are determined by

(1) and Si
q . Hence Yl,q is also Gaussian and its mean yl,q and

variance bl,q are given by

yl,q = E[Yl,q] =

N∑
i=1

Ki∑
k=1

Ri
lkα

i
k,qdi,q,

bl,q = Var[Yl,q] =

N∑
i=1

 Ki∑
k=1

Ri
lkα

i
k,q

2

σ2
i,q.

(4)

IV. APPROXIMATE SOLUTIONS TO STOCHASTIC NETWORK
OPTIMIZATION

The probability term poses significant difficulty in solving
the short-term (2) and long-term (3) problem, and we have to
resort to approximate solutions.

Let us first consider the long-term problem (3). Note that
in practice the upper bound ε for the violation probability is
small, so the probability of the event that the capacity of two
or more links is exceeded can be safely ignored. Therefore,
we can use

L∑
l=1

Pr(Yl,q > cl) ≤ ε

to replace the original probability constraints in (3) without
increasing much cost. To further simplify the problem, we
constraint the violation probability of each link separately by
setting

Pr(Yl,q > cl) ≤ ε/L, l = 1, . . . , L. (5)

Then the probability constraints in (3) will be automatically
satisfied as long as all the above constraints (5) hold.

Let f(x) be the survival function of standard normal distri-
bution, i.e.,

f(x) = Pr(X > x),

where X is subject to the standard normal distribution. Using
(4) to normalize the random variable Yl,q, we get

ε/L ≥ Pr(Yl,q > cl)

= Pr

(
Yl,q − yl,q√

bl,q
>
cl − yl,q√

bl,q

)

= f

(
cl − yl,q√

bl,q

)
.

Define

A =
1

f−1(ε/L)
.

As f(x) is monotonically decreasing, (5) is equivalent to

cl − yl,q√
bl,q

≥ 1

A
.



Combining the above inequality with (4), we approximate
the original long-term problem (3) as follows:

min

L∑
l=1

plcl

s. t.

N∑
i=1

 Ki∑
k=1

Ri
lkα

i
k,q

2

σ2
i,q ≤ A2(cl − yl,q)2,

∀l = 1, . . . , L, q = 1, . . . , Q,

yl,q =

N∑
i=1

Ki∑
k=1

Ri
lkα

i
k,qdi,q ≤ cl, ∀l = 1, . . . , L,

q = 1, . . . , Q,

Ki∑
k=1

αi
k,q = 1, ∀i = 1, . . . , N, q = 1, . . . , Q,

αi
k,q ≥ 0, ∀i = 1, . . . , N, k = 1, . . . ,Ki,

q = 1, . . . , Q.

(6)

The above problem (6) is in the form of second-order cone
programming, which is a well-studied convex optimization
problem that can be efficiently solved. Next, we will analyze
the performance loss of the approximate solution obtained
from (6) from the actual optimal solution for (3).

Theorem 1: Let opt be the optimal value of the original
problem (3) and sol be the optimal value of the approximation
(6), then

opt ≤ sol ≤ A′

A
opt,

where
A′ =

1

f−1(ε)
.

Proof: Since the optimal solution to the approximation (6)
is feasible for the original problem (3), we have opt ≤ sol.
For the other direction, pick up an optimal solution to (3), and
let c̄l be the chosen link capacities in this solution. Then for
each link l,

Pr(Yl,q > c̄l) ≤ Pr

(
L⋃

l′=1

{Yl′,q > c̄l′}

)
≤ ε.

After normalizing the random variable Yl,q, we get

c̄l − yl,q√
bl,q

≥ 1

A′
.

Define ĉl = c̄lA
′/A. Since A ≤ A′ and yl,q ≥ 0,

ĉl − yl,q√
bl,q

≥ A′

A

c̄l − yl,q√
bl,q

≥ 1

A
.

Using the capacities ĉl and the same split ratios from the
considered optimal solution, by the above inequality we get
a feasible solution to the approximate problem (6) whose
objective value

A′

A
opt ≥ sol,

Fig. 1. The relationship between the approximation ratio A′/A of proposed
approximation algorithm and the number of links L in the network for
different violation probability ε.

which completes the proof.
To study the approximation ratio of the approximation

algorithm, we need to understand how A′/A depends on ε
and the number of links L. The following property about the
survival function f(x) will be helpful:

Lemma 2: If x > 0,(
1

x
− 1

x3

)
1√
2π
e−x

2/2 < f(x) <
1

x

1√
2π
e−x

2/2.

For its proof, see [10, Section 7.1]. If x > 2, the above
inequality implies

1

x+ 1

1√
2π
e−x

2/2 < f(x) <
1√
2π
e−x

2/2. (7)

Suppose ε is sufficiently small such that A ≤ A′ < 1/2.
Applying the inequality (7), we obtain

ε

L
= f

(
1

A

)
<

1√
2π
e−1/2A

2

.

Thus
1

2A2
< logL− log(

√
2πε). (8)

On the other hand,

ε = f

(
1

A′

)
>

1

1/A′ + 1

1√
2π
e−1/2A

′2
.

By the inequality (7) again,

1

2A′2
> − log(1/A′ + 1)− log(

√
2πε)

≥ −1/A′ − log(
√

2πε)

≥ −1/A′2 − log(
√

2πε),

so
3

2A′2
> − log(

√
2πε). (9)

Combining the both inequalities (8) and (9) above, we get

A′/A ≤ O(
√

logL/ log(1/ε)).

The above analysis provides the order of approximation
ratio as the number of links L increasing. In fact, for fixed L
and ε, we can directly compute A′/A, which gives the upper



bound for the approximation ratio in all networks containing
at most L links. Fig. 1 shows the relationship between A′/A
and L for different violation probability ε. In general, the
performance of the approximation algorithm decreases slowly
when the number of links L increases, and the performance
would be better if ε is smaller. For typical backbone networks
in which L is around 20, the approximation ratio is in the range
of 1.2–1.4, which means that our algorithm is guaranteed to
find a feasible solution whose cost is at most 40% higher than
the actual optimal cost.

Similar idea can also be applied to the short-term optimiza-
tion problem (2). First, we introduce a new decision variable
ε for problem (2) and rewrite this problem equivalently by
changing the objective function to be ε and adding a new
constraint

Pr

(
L⋃

l=1

{Yl > cl}

)
≤ ε.

By the same steps for the long-term problem (3), the problem
(2) can also be approximated as

min A

s. t.

N∑
i=1

 Ki∑
k=1

Ri
lkα

i
k

2

σ2
i ≤ A2(cl − yl)2,

∀l = 1, . . . , L,

yl =

N∑
i=1

Ki∑
k=1

Ri
lkα

i
kdi ≤ cl, ∀l = 1, . . . , L,

Ki∑
k=1

αi
k = 1, ∀i = 1, . . . , N,

αi
k ≥ 0, ∀i = 1, . . . , N, k = 1, . . . ,Ki,

(10)

where di and σ2
i are the mean and variance of the traffic vol-

ume Di, respectively. For fixed A, the constraints in the above
problem (10) are all linear or second-order cone constraints,
so we can find the optimal solution to (10) by bisection
searching over A, which provides an approximation algorithm
to solve the original short-term optimization problem (2) with
approximation ratio L.

V. NUMERICAL EXAMPLE

To illustrate the effectiveness of our new approach, in this
part we will apply our method to the Abilene network as an
example, which has 11 nodes and 15 undirected links (see [9,
Fig. 2(a)] for its topology). To be consistent with the model
in this paper, we assume that all links can be used to transmit
in either direction and the capacities for both directions can
be chosen independently. We also assume that there is a
traffic demand for every pair of nodes in the network. Two
available paths are picked for each demand, which are the
shortest and the second shortest path between the source and
destination in terms of the number of hops. The parameters
in the traffic model (1) are determined by the following way:
The long-term trend Li is randomly chosen subject to uniform

distribution in [1.5, 10]. There will be Q scenarios for the
short-term timescale, and the seasonal component Si

q in each
scenario q is also uniformly randomly chosen in [1, 1.5]. The
random fluctuation W i in the transient timescale is standard
normal, and the peakedness ai in (1) all equals to a constant a.
Furthermore, for simplicity the link cost pl per unit capacity
for each link l is assumed to be 1.

We compare our result with the traditional approach [11]
in which network operators handle the traffic fluctuations by
directly limiting the link utilization. One possible formulation
is as follows:

min

L∑
l=1

plcl

s. t.

N∑
i=1

Ki∑
k=1

Ri
lkα

i
kdi ≤ ρcl, ∀l = 1, . . . , L,

Ki∑
k=1

αi
k = 1, ∀i = 1, . . . , N,

αi
k ≥ 0, ∀i = 1, . . . , N, k = 1, . . . ,Ki.

(11)

Here di is the estimated average traffic volume for demand
i, while 0 < ρ ≤ 1 is a constant representing the maximum
acceptable link utilization specified based on the experience
of the operator. In the optimal solution to (11), all the link
capacity constraints must be tight and thus the utilization
of each link is exactly ρ. However, the actual fluctuations
of flow rate on links can be quite different, and links with
smaller fluctuations have reserved unnecessary extra capacity.
In contrast, our method is able to figure out the precise
capacity needed to guarantee the SLA requirements, saving
huge cost compared with the traditional approach.

Now we evaluate the performance for both approaches. For
the traditional approach, we solve the problem (11) with di
being the mean value of traffic Di. For our new approach,
we solve the long-term problem (6) first to determine the link
capacities cl and then solve the short-term problem (10) for
each scenario q to determine the split ratios αi

k,q . Next, a large
number of cases of traffic demand are generated for all the
scenarios according to the assumed probability distribution,
and we count the total number of cases in which the capacity
of some link is exceeded, giving the empirical link capacity
violation probability.

By varying ρ in (11) and A in (6), we obtain a series
of solutions with different cost and link capacity violation
probability, which are shown in Fig. 2. To minimize the cost,
the network operator would choose the maximum ρ or A as
long as the corresponding violation probability is acceptable.
To achieve the same violation probability (for example, 0.005),
the cost of the solution from our new approach is at least
25% lower than the cost from the traditional approach, and the
improvement is more significant when the number of scenarios
Q or the peakedness a of the traffic in the transient timescale
increases.
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Fig. 2. The trade-off between the network cost and the link capacity violation probability when the traditional approach or our proposed approach is applied
for different number of scenarios Q and different peakedness a of the traffic.

This paper opens up new directions for the traffic engineer-
ing problem with uncertain demands, although the quantitative
gain depends on the Gaussian assumption of the traffic fluc-
tuations. Future investigations are necessary to pin down the
exact statistical distribution using empirical data and to see
how our proposed algorithms would behave in real networks.
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