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Abstract—This paper investigates the uniqueness of a nonneg-
ative vector solution and the uniqueness of a positive semidefinite
matrix solution to underdetermined linear systems. A vector
solution is the unique solution to an underdetermined linear
system only if the measurement matrix has a row-span inter-
secting the positive orthant. Focusing on two types of binary
measurement matrices, Bernoulli 0-1 matrices and adjacency
matrices of general expander graphs, we show that, in both
cases, the support size of a unique nonnegative solution can
grow linearly, namely O(n), with the problem dimension n.
We also provide closed-form characterizations of the ratio of
this support size to the signal dimension. For the matrix case,
we show that under a necessary and sufficient condition for
the linear compressed observations operator, there will be a
unique positive semidefinite matrix solution to the compressed
linear observations. We further show that a randomly generated
Gaussian linear compressed observations operator will satisfy
this condition with overwhelmingly high probability.

I. INTRODUCTION

This paper is devoted to recover a “nonnegative” decision
variable from an underdetermined system of linear equations.
When the decision variable is a vector, “nonnegativity” means
each entry is nonnegative. When the decision variable is a
matrix, “nonnegativity” indicates that the matrix is positive
semidefinite. The problem is ill-conditioned in general, how-
ever, we can correctly recover the vector or the matrix if the
vector is sparse, or the matrix is low rank.

Finding the sparest vector among vectors satisfying a set of
linear equations is NP-hard [7]. One frequently used heuristic
is ℓ1-minimization, which returns the vector with the least ℓ1
norm. Recently, there has been an explosion of research on
this topic, see e.g., [2], [7]–[9], [14]. [7] gives a sufficient
condition known as Restricted Isometry Property (RIP) on
the measurement matrix that guarantees the recovery of the
sparest vector via ℓ1 minimization. In many interesting cases,
the vector to recover is nonnegative [5][12][31]. [12] gives
a necessary and sufficient condition known as the outwardly
neighborliness property of the measurement matrix for ℓ1
minimization to successfully recover a sparse nonnegative
vector. Moreover, recent studies [5], [13], [20] suggested that a
sparse solution could be the unique nonnegative solution. This
can potentially lead to better alternatives to ℓ1 minimization
as in this case any optimization problem (with any objective
function, for example, ℓ2 norm) over this constraint set can
recover the original unknown. In addition, the sparsest solution
can be viewed as a biased solution to an underdetermined
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system, which is undesired in the unbiased networks diagnosis
[31]. However, if the uniqueness property holds, the sparse
solution is indeed the only nonnegative solution, and thus,
unbiased. Therefore, the uniqueness property could be useful
in providing unbiased networks diagnosis.

Motivated by networking inference problems such as net-
work tomography, we are particularly interested in systems
where the measurement matrix is a 0-1 matrix. There have
not been many existing results on this type of systems except
a few very recent papers [3], [4], [20], [29]. We focus on two
types of binary matrices, Bernoulli 0-1 matrices and adjacency
matrices of expanders, and provide conditions under which
a sparse vector is the unique nonnegative solution to the
underdetermined system. For random Bernoulli measurement
matrices, we prove that, as long as the number of equations
divided by the number of variables remains constant as the
problem dimension grows, with overwhelming probability
over the choices of matrices, a sparse nonnegative vector is
a unique nonnegative solution provided that its support size is
at most proportional to its dimension for some positive ratio.
For general expander matrices, we further provide a closed-
form constant ratio of support size to dimension under which
a nonnegative vector is the unique solution.

The phenomenon that an underdetermined system admits a
unique “nonnegative” solution is not restricted for the vector
case. Finding the minimum rank matrix among all matrices
satisfying given linear equations is a rank minimization prob-
lem. Among the rank minimization problems, one particu-
larly important class is the rank minimization problem for
positive semidefinite matrices under compressed observations.
For example, minimizing the rank of a covariance matrix,
which is a positive semidefinite matrix, arises in statistics,
econometrics, signal processing and many other fields where
second-order statistics for random processes are used [16]. A
positive semidefinite matrix is special in that its eigenvalues
(also its singular values) are nonnegative. In fact, the nuclear
norm minimization heuristic for general matrices was preceded
by the trace norm heuristic for positive symmetric matrices
in rank minimization problems. While the general analytic
frameworks and computational techniques, for example, [25],
[26], are applicable to the rank minimization problems for pos-
itive semidefinite matrices, the special properties of positive
semidefinite matrices may open the way to new structures and
new analysis, which more efficient computational techniques
may exploit to provide faster matrix recovery.

Parallel to the influence of the nonnegative constraint on a
vector variable, the positive semidefinite constraint on a matrix
variable may dramatically reduce the size of the feasible set



in rank minimization problems. In particular, we show that
under a necessary and sufficient condition for the linear com-
pressed observations operator, there will be a unique positive
semidefinite matrix solution to compressed linear observations.
We further show that a randomly generated Gaussian linear
compressed observations operator will satisfy this necessary
and sufficient condition with overwhelmingly high probability.
This result is akin to the one in the vector case for the unique
nonnegative solution, but the transition from a nonnegative
vector to a positive semidefinite matrix requires very different
analytical approaches.

This paper is organized as follows. Section II discusses the
phenomena that a sparse vector can be the unique nonnegative
vector satisfying an underdetermined linear system. Focusing
on 0-1 matrices, we prove that a sparse vector is a unique
nonnegative solution as long as its support size is at most
proportional to the dimension for some positive ratio. We
further give a closed-form ratio of the support size and the
dimension if the matrix is an adjacent matrix of an expander
graph. Section III shows a low-rank matrix can be the unique
positive semidefinite matrix satisfying compressed linear mea-
surements. We provide a necessary and sufficient condition
for this phenomenon to happen and prove the existence of
compressed measurements satisfying the proposed condition.
Numerical examples are discussed in Section IV and Section
V concludes the paper.

II. UNIQUE NONNEGATIVE VECTOR TO AN
UNDERDETERMINED SYSTEM

How to recover a vector x ∈ Rn from the measurement y =
Ax ∈ Rm, where Am×n(m < n) is the measurement matrix?
In many applications, x is nonnegative, which is our main
focus here. In general, the task seems impossible as we have
fewer measurements than variables. However, if x is sparse,
it can be recovered by solving the following problem,

min ∥x∥0 s.t. Ax = y,x ≥ 0, (II.1)

where the ℓ0 norm ∥ · ∥0 measures the number of nonzero
entries of a given vector. Since (II.1) in general is NP-hard,
people solve an alternative convex problem by replacing ℓ0
norm with ℓ1 norm where ∥x∥1 =

∑
i |xi|.The ℓ1 minimiza-

tion problem can be formulated as follows:

min1Tx s.t. Ax = y,x ≥ 0. (II.2)

In fact, for a certain class of matrices, if x is sufficiently
sparse, not only can we recover x from (II.2), but also x is
the only solution to {x | Ax = y,x ≥ 0}. In other words,
{x | Ax = y,x ≥ 0} is a singleton. Then x can possibly
be recovered by other techniques to be developed besides ℓ1
minimization, since in this case the set {x | Ax = y,x ≥
0} contains only one solution, which can be recovered by
optimizing any objective function over this constraint set.

[5] analyzed the singleton property of matrices with a row-
span intersecting the positive orthant. Here we first show only
these matrices can possibly have the singleton property.

Definition 1 ([5]). A has a row-span intersecting the positive
orthant, denoted by A ∈ M+, if ∃β > 0 (β ∈ Rn) in the row
space of A, i.e. ∃h ∈ Rm such that hTA = βT > 0.

There is a simple observation regarding matrices in M+.

Lemma 1. Let ai ∈ Rm (i = 1, 2, ..., n) be the ith column of
matrix A, then A ∈ M+ if and only if 0 /∈ P , where

P , Conv(a1,a2, ...,an) = {
∑
i

λiai|1Tλ = 1,λ ≥ 0,λ ∈ Rn}

Proof: If A ∈ M+, then ∃h ∈ Rm such that hTA =
βT > 0. Suppose we also have 0 ∈ P , then ∃λ ≥ 0(λ ∈ Rn)
such that Aλ = 0 and 1Tλ = 1. Then (hTA)λ = βTλ > 0
as β > 0, λ ≥ 0 and λ ̸= 0. But (hTA)λ = hT (Aλ) = 0 as
Aλ = 0. Contradiction! Therefore 0 /∈ P .

Conversely, if 0 /∈ P , there exists a separating hyperplane
{x | hTx + b = 0,h ̸= 0} that strictly separates 0 and P .
We assume without loss of generality that hT0 + b < 0 and
hTx+ b > 0 for any point x in P . Then hTai > −b > 0,∀i.
Thus we conclude hTA > 0.

The next theorem states a necessary condition on matrix A
for {x | Ax = Ax0,x ≥ 0} to be a singleton.

Theorem 1. If {x | Ax = Ax0,x ≥ 0} is a singleton for
some x0 ≥ 0, then A ∈ M+.

Proof: Suppose A /∈ M+, from Lemma 1 we know 0 ∈
Conv(a1, a2, ..., an). Then ∃w ≥ 0 (w ∈ Rn) such that Aw =
0 and 1Tw = 1. Clearly w ∈ Null(A) and w ̸= 0. Then for
any γ > 0 we have A(x0 + γw) = Ax0 + γAw = Ax0, and
x0+γw ≥ 0 provided x0 ≥ 0. Hence x0+γw ∈ {x | Ax =
Ax0,x ≥ 0}.

Theorem 1 shows that A ∈ M+ is a necessary condition
for an underdetermined system to admit a unique nonneg-
ative vector. If Am×n is a random matrix such that every
entry is independently sampled from Gaussian distribution
with zero mean, then the probability that 0 lies in the
convex hull of the column vectors of A, or equivalently
{x | Ax = Ax0,x ≥ 0} is not a singleton for any
x0 ≥ 0, is 1 − 2−n+1

∑m−1
k=0

(
n−1
k

)
([28]), which goes to 1

asymptotically as n increases if limn→+∞
m
n < 1

2 . Thus, if
limn→+∞

m
n < 1

2 , then for a random Gaussian matrix A,
{x | Ax = Ax0,x ≥ 0} would not be a singleton with
overwhelming probability no matter how sparse x0 is. This
phenomenon is also characterized in [13].

The property that {x | Ax = Ax0,x ≥ 0} is a singleton
can also be characterized in both high-dimensional geometry
[13] and the null space property of A [20]. We state three
equivalent statements in Theorem 2.

Theorem 2 ([13][20]). The following three properties of
Am×n are equivalent:

• For any nonnegative vector x0 ∈ Rn with a support size
no greater than k, the set {x | Ax = Ax0,x ≥ 0} is a
singleton.

• The polytope P defined in (II.3) has n vertices and is
k-neighborly.

• For any w ̸= 0 (w ∈ Rn) in the null space of A, both
the positive support and the negative support of w have
a size of at least k + 1.



Note that a polytope P is k-neighborly if every set of k
vertices spans a face F of P . F is a face of P if there exists
αF ∈ Rn and a constant c such that αT

Fx = c,∀x ∈ F , and
αT

Fx < c,∀x /∈ F and x ∈ P .
[13] (Corollary 4.1) shows that there exists a special partial

Fourier matrix Ω with 2p + 1 rows such that {x | Ωx =
Ωx0,x ≥ 0} is a singleton for every nonnegative p-sparse
signal x0. Here we will show the result is the “best” we can
hope for in the sense that a matrix A should have at least
2p + 1 rows if {x | Ax = Ax0,x ≥ 0} is a singleton for
every nonnegative p-sparse signal x0.

Proposition 1. For a matrix Am×n (m < n), if {x | Ax =
Ax0,x ≥ 0} is a singleton for any nonnegative p-sparse
signal x0, then m ≥ 2p+ 1.

Proof: Pick the first m + 1 columns of A, denoted by
a1,a2, ...,am+1 ∈ Rm. Since there are m equations and m+1
variables u1, u2, ..., um+1 in (II.3), then (II.3) admits a non-
zero solution.

m+1∑
i=1

uiai = 0. (II.3)

From Theorem 1 we know that A ∈ M+, i.e. there exists
h such that hTA = βT > 0. Taking the inner product of both
sides of (II.3) with h, we have

∑m+1
i=1 βiui = 0.

Since β > 0, from
∑m+1

i=1 βiui = 0 we know vector u =
(ui, i = 1, ...,m + 1) should have both positive and negative
terms. Collecting positive and negative terms of u separatively,
we can rewrite (II.3) as follows,∑

i∈I+

uiai = −
∑
i∈I−

uiai, (II.4)

where I+ is the set of indices of positive terms of u and I−
is the set of indices of negative terms. Note that |I+|+ |I−| ≤
m + 1. We also have

∑
i∈I+

βiui = −
∑

i∈I−
βiui , r > 0

by multiplying hT to the left of both sides of (II.4).
Suppose m ≤ 2p, then |I+|+|I−| ≤ m+1 ≤ 2p+1, thus we

know that |I+| ≤ p, or |I−| ≤ p, or both hold. Let us first con-
sider the case that |I+| ≤ p. Define Bn×n = diag(β) and let
Dm×n = AB−1. Then there is a one-to-one correspondence
z = Bx ∈ Rn between the two sets {x | Ax = Ax0,x ≥ 0}
and {z | Dz = Dz0, z ≥ 0}, where z0 = Bx0 ∈ Rn. Note
that for any nonnegative and k sparse vector x, z = Bx is
also nonnegative and k sparse. And the converse statement also
holds. Since {x | Ax = Ax0,x ≥ 0} is a singleton for every
nonnegative p-sparse signal x0, then {z | Dz = Dz0, z ≥ 0}
is also a singleton for every nonnegative p-sparse signal z0.
From Theorem 2 Conv(a1

β1
, a2

β2
, ..., an

βn
) is p-neighborly, which

implies that for any index set I with |I| = p, there exists
η ∈ Rm and constant c such that ηTai = βic for any i ∈ I ,
and ηTai < βic for all i /∈ I . We consider specifically an
index set I , which contains I+ but does not contain I−, and its
corresponding vector η. Taking the inner product of both sides
of (II.4) with η, we would get rc on the left and some value
strictly smaller than rc on the right, and reach a contradiction.
For the case that |I−| ≤ p we can reach a contradiction through
similar arguments, thus m ≥ 2p+ 1 holds.

Sparse recovery problems appear in different fields. Spe-
cific problem setup may impose further constraints on the
measurement matrix. We are particularly interested in network
inference problems, in which the measurement matrix is a 0-1
routing matrix. Network inference problems attempt to extract
individual parameters based on aggregate measurements in
networks. There has been active research in this area includ-
ing a wide spectrum of approaches ranging from theoretical
reasoning to empirical measurements [11][23][15][30][24].

Since the measurement matrices in network inference prob-
lems are 0-1 matrices, the instances when A is a 0-1 matrix
are our main focus. Section II-A and II-B prove that a
sparse vector can be the unique nonnegative vector satisfying
compressed linear measurements if the measurement matrix
is a random Bernoulli matrix or an adjacency matrix of an
expander graph. Moreover, the support size of the sparse
vector can be proportional to the dimension, in other words,
the support size of the unique nonnegative vector is O(n)
where n is the dimension, while the provable support size
for uniqueness property in [5] is O(

√
n). Besides, for any

θ , limn→+∞
m
n > 0, the support size of a sparse vector that

is a unique nonnegative solution can always be O(n), while
for Gaussian measurement matrices, with high probability,
{x | Ax = Ax0,x ≥ 0} would not be a singleton for any
nonnegative x0 (with linearly growing sparsity) if θ < 1

2
[13]. This also shows the fundamental difference between 0-
1 measurement matrices and well studied Gaussian random
measurement matrices.

A. Uniqueness with 0-1 Bernoulli Matrices

First we consider the uniqueness property with dense 0-1
Bernoulli matrix. The measurement matrix A is an (m+1)×n
measurement matrix, with each element in the first m rows
of A being i.i.d. Bernoulli random variables, taking values
‘0’ with probability 1

2 and taking values ‘1’ with probability
1
2 . The last row of A is a 1 × n all ‘1’ vector. We also
assume the fraction ratio m

n is a constant θ as the dimension
n grows. It turns out that as n goes to infinity, with over-
whelming probability there exists a constant γ > 0 such that
{x | Ax = Ax0,x ≥ 0} is a singleton for any nonnegative
(γn − 1)-sparse signal x0. To see this, we first present the
following theorem:

Theorem 3. For any θ > 0, there exists a constant γ > 0
such that, with overwhelmingly high probability as n → ∞,
any nonzero vector w in the null space of the measurement
A mentioned above has at least γn negative and at least γn
positive elements.

Proof: Let us consider an arbitrary nonzero vector w ∈
Rn in the null space of A. Let S be the support set for the
negative elements of w and let Sc be the support set for the
nonnegative elements of w. We now want to argue that, with
overwhelmingly high probability, the cardinality |S| of the set
S can not be too small.

From the large deviation principle and a simple union
bound, for any ϵ > 0, with overwhelmingly high probability
as n goes to infinity, simultaneously for every column of the



measurement matrix, the sum of its (m+1) elements will be
in the range [ 12θ(1− ϵ)n, 1

2θ(1 + ϵ)n].
Since Aw = 0, then ASwS+AScwSc = 0, where AS , wS ,

ASc , and wSc are respectively the part of matrix A and vector
w indexed by the sets S and Sc. Multiplying the 1× (m+1)
row vector [1, 1, ..., 1] to both sides of this equation, we get

USwS + UScwSc = 0, (II.5)

where US is an 1×|S| vector, each component of which repre-
sents the sum of the elements from the corresponding column
of AS ; USc is an 1 × |Sc| vector, each component of which
represents the sum of the elements from the corresponding
column of ASc .

From the concentration result of the column sums, we
know USwS ≥ − 1

2θ(1 + ϵ)n∥wS∥1, and UScwSc ≥ 1
2θ(1−

ϵ)n∥wSc∥1. But combining these two inequalities with (II.5),
we have 1

2θ(1− ϵ)n∥wSc∥1 − 1
2θ(1 + ϵ)n∥wS∥1 ≤ 0, which

implies
∥wS∥1
∥wSc∥1

≥ 1− ϵ

1 + ϵ
. (II.6)

Now we look at the null space of the measurement matrix
A. First, notice that the null space of A is a subset of the
null space of the matrix A′ comprising of the first θn rows of
A subtracted by the last row of A (the all ‘1’ vector). Then
the matrix A′ is a random ±1 Bernoulli measurement matrix,
which is known to satisfy the restricted isometry condition.
Recall one result about the null space property of a matrix
satisfying the restricted isometry condition:

Lemma 2 ([6]). Let h ∈ Rn be any vector in the null space
of A′ and let T0 be any set of cardinality q. Then

∥hT0∥1 ≤
√
2δ2q

1− δ2q
∥hT c

0
∥1,

where δ2q is the restricted isometry constant([8]) for sparse
vectors with support set size no bigger than 2q, namely, δ2q
is the smallest positive number such that for any set T with
|T | ≤ 2q, and any vector y ∈ Rn, the following holds:

√
m(1− δ2q)∥y∥2 ≤ ∥A′

Ty∥2 ≤
√
m(1 + δ2q)∥y∥2.

Reasoning from Lemma 2 and (II.6), after some algebra,
we know immediately, for q = |S|, δ2q must satisfy

δ2q ≥ 1− ϵ

1− ϵ+
√
2(1 + ϵ)

.

We also know there exists a γ > 0 such that for any q ≤ γn,
with overwhelmingly high probability as n → ∞,

δ2q <
1− ϵ

1− ϵ+
√
2(1 + ϵ)

,

thus with overwhelmingly high probability as n → ∞, the
size of the negative support, namely |S|, is at least γn.

Similarly, we have the same conclusion for the cardinality
of the support set of the positive elements for any nonzero
vector from the null space of the matrix A.

Theorem 3 immediately indicates that {x | Ax = Ax0,x ≥
0} is a singleton for all nonnegative x0 that is γn− 1 sparse.
Thus the support size of the unique nonnegative vector can be
as large as O(n), while the previous result in [5] is O(

√
n).

Fig. 1. The bipartite graph corresponding to matrix A in (II.7)

B. Uniqueness with Expander Adjacency Matrices

Section II-A discusses the singleton property with 0-1
Bernoulli matrices, here we focus on another type of 0-
1 matrices where the matrix A is the adjacency matrix of
a bipartite expander graph. [4], [20], [29] studied related
problems using expander graph with constant left degree. We
instead employ a general definition of expander which does
not require constant left degree.

Every m × n binary matrix A is the adjacency matrix of
an unbalanced bipartite graph with n left nodes and m right
nodes. There is an edge between right node i and left node j
if and only if Aij = 1. Let dj denote the degree of left node
j, and let dl and du be the minimum and maximum of left
degrees. Define ρ = dl/du, then 0 < ρ ≤ 1. For example, the
bipartite graph in Fig. 1 corresponds to the matrix A in (II.7).
Here dl = 1, du = 2, and ρ = 0.5.

A =

 1 1 1 0 0
1 0 0 1 0
0 0 1 1 1

 . (II.7)

Definition 2 ([22]). A bipartite graph with n left nodes and
m right nodes is an (α, δ) expander if for any set S of left
nodes of size at most αn, the size of the set of its neighbors
Γ(S) satisfies |Γ(S)| ≥ δ|E(S)|, where E(S) is the set of
edges connected to nodes in S, and Γ(S) is the set of right
nodes connected to S.

Our next main result regarding the singleton property of an
adjacency matrix of a general expander is stated as follows.

Theorem 4. For an adjacency matrix A of an (α, δ) expander
with left degrees in the range [dl, du], if δρ >

√
5−1
2 ≈ 0.618,

then for any nonnegative k-sparse vector x0 with k ≤ α
1+δρn,

{x | Ax = Ax0,x ≥ 0} is a singleton.

Proof: From Theorem 2, in order to prove that {x | Ax =
Ax0,x ≥ 0} is a singleton for any nonnegative α

1+δρn-sparse
vector x0, we only need to argue that for any nonzero w such
that Aw = 0, we have |S−| ≥ αn

1+δρ +1 and |S+| ≥ αn
1+δρ +1,

where S− and S+ are negative support and positive support
of w respectively.

We will prove by contradiction. Suppose without loss of
generality that there exists a nonzero w in Null(A) such that
|S−| = s ≤ αn

1+δρ , then the set E(S−) of edges connected
to nodes in S− satisfies dls ≤ |E(S−)| ≤ dus. Then the set
Γ(S−) of neighbors of S− satisfies

dus ≥ |E(S−)| ≥ |Γ(S−)| ≥ δ|E(S−)| ≥ δdls,

where the third equality comes from the expander property.



Notice that Γ(S−) = Γ(S+) = Γ(S− ∪ S+), otherwise
Aw = 0 does not hold, then |S+| ≥ |Γ(S+)|

du
= |Γ(S−)|

du
≥

δdls
du

= δρs.
Now consider the set S− ∪ S+, we have |S− ∪ S+| ≥ (1 +

δρ)s. Pick an arbitrary subset S̃ ∈ S− ∪ S+ such that |S̃| =
(1 + δρ)s ≤ αn. From expander property, we have

|Γ(S̃)| ≥ δ|E(S̃)| ≥ δdl|S̃| = δρ(1 + δρ)dus > dus.

The last inequality holds since δρ(1+ δρ) > 1 provided δρ >√
5−1
2 . But |Γ(S̃)| ≤ |Γ(S− ∪ S+)| = |Γ(S−)| ≤ dus. A

contradiction arises, which completes the proof.

Corollary 1. For an adjacency matrix A of an (α, δ) expander
with constant left degree d, if δ >

√
5−1
2 , then for any

nonnegative k-sparse vector x0 with k ≤ α
1+δn, {x | Ax =

Ax0,x ≥ 0} is a singleton.

Theorem 4 together with Corollary 1 is an extension to
existing results. Theorem 3.5 of [20] shows that for an
(α, δ) expander with constant left degree d, if dδ > 1,
then there exists a matrix Ã (a perturbation of A) such that
{x | Ãx = Ãx0,x ≥ 0} is a singleton for every nonnegative
δαn-sparse x0. Our result instead can directly quantify the
sparsity threshold needed for a vector to be a unique solution to
compressed measurements induced by A, not its perturbation.
[4] discussed the success of ℓ1 recovery of a general vector x
for expanders with constant left degree. If we apply Theorem
1 of [4] to cases where x is known to be nonnegative, the
result can be interpreted as that {x | Ax = Ax0,x ≥ 0}
is a singleton for any nonnegative α

2 n-sparse vector x0 if
δ > 5

6 ≈ 0.833. Our result in Corollary 1 implies that if
δ >

√
5−1
2 ≈ 0.618, x0 can be α

1+δn-sparse and still be the
unique nonnegative solution.

[27][17] proved that for any m, n and δ > 0, there exists
an (α, δ) expander with constant left degree d for some d and
α > 0, and such an expander can be generated through random
graphs. There also exist explicit constructions of expander
graphs [10]. Combining the results with Corollary 1, for any
m and n, we can generate an (α, δ) expander with adjacency
matrix A such that {x | Ax = Ax0,x ≥ 0} is a singleton
for any nonnegative kn-sparse x0, where k = α

1+δ > 0. Thus,
same as Bernoulli 0-1 matrices, the adjacency matrix A of an
(α, δ) expander has the property that {x | Ax = Ax0,x ≥ 0}
is a singleton as long as the support size of x0 is O(n). We
further provide an explicit constant α

1+δ of the ratio of the
support size to the dimension. Note that this result is indepen-
dent of m

n , while as discussed earlier, if the matrix has i.i.d.
Gaussian entries and lim

n→+∞
m
n < 1

2 , {x | Ax = Ax0,x ≥ 0}
is not a singleton despite the sparsity of x0.

III. UNIQUE POSITIVE SEMIDEFINITE SOLUTION TO AN
UNDERDETERMINED SYSTEM

A. When is Low-rank Positive Semidefinite Solution the
Unique Solution?

Section II studies the case when a sparse nonnegative vector
is the only nonnegative solution to the system of compressed
linear measurements. Here we extend the problem into the

matrix space. Let X be an n × n matrix decision variable.
Let A : Rn×n → Rm be a linear map, and let b ∈ Rm. The
main optimization problem under study for low-rank matrix
recovery is

minimize rank(X)
subject to A(X) = b .

(III.1)

In this paper, we are interested in looking at the property of
the feasible set {X ′ | A(X ′) = b}. Indeed, if there exists a
X ′ such that A(X ′) = b, then X ′ plus any matrix in the null
space of A also satisfies A(X ′) = b. However, in applications,
one is often interested in recovering a positive semidefinite
symmetric matrix X , (X ≽ 0 and X ∈ Sn, where Sn is
the set of n × n real symmetric matrices) from compressed
observations. To determine a positive semidefinite symmetric
matrix X , we only need to determine n(n+1)

2 unknowns in the
upper triangular part of X . Thus the linear operator A(X) in
(III.1) is equivalent to an operator A∗(X⊥) : R

n(n+1)
2 → Rm,

where m ≤ n(n+1)
2 and X⊥ denotes the upper triangular part

of the n× n symmetric matrix X . The null space of A∗ is a
subset of R

n(n+1)
2 such that each point from this set, arranged

accordingly as the upper triangular part of an n×n matrix Y ,
satisfies A(Y ) = A∗(Y ⊥) = 0 ∈ Rm.

Now we ask this question, can we uniquely determine the
positive semidefinite symmetric matrix X from A(X) = b,
namely can the feasible set {X ′ | A(X ′) = b, X ′ ≽
0, X ′ ∈ Sn} be a singleton? The next theorem gives an
affirmative answer to this question, and shows that if the
linear measurement operator satisfies certain conditions and
the positive semidefinite symmetric matrix X is of low rank,
then the feasible set {X ′ | A(X ′) = b, X ′ ≽ 0, X ′ ∈ Sn} is
a singleton, namely X is not only the only low-rank solution,
but also the only possible solution.

Theorem 5. Let X be a positive semidefinite symmetric matrix
of rank r and A∗ : R

n(n+1)
2 → Rm be a linear operator

which operates on the upper triangular part of X , where m <
n(n+1)

2 . Then {X ′ | A(X ′) = A(X), X ′ ≽ 0, X ′ ∈ Sn} is a
singleton for all X with rank no greater than r, if and only
if for every non-all-zero symmetric matrix generated from the
null space of A∗ has at least r + 1 negative eigenvalues.

Proof: Sufficiency: we first show that if every non-all-
zero symmetric matrix generated from the null space of A∗

has at least r + 1 negative eigenvalues, then {X ′ | A(X ′) =
A(X), X ′ ≽ 0, X ′ ∈ Sn} is a singleton. Suppose instead
there exist a X ′′ ∈ Sn such that X ′′ ̸= X and A(X ′′) =
A(X), then the upper triangular part of X ′′ − X is in the
null space of the linear operator A∗. By the assumption, we
know that X ′′ − X has at least r + 1 negative eigenvalues.
Since X ′′−X is a symmetric matrix, its eigenvalues are real.
For a matrix, we denote these eigenvalues in an nondecreasing
order, namely, λ1 ≤ λ2 ≤ · · ·λn−1 ≤ λn.

By a classical variational characterization of eigenvalues
[19], if A and B are both n × n Hermitian matrices and
B has rank at most r, then λk(A + B) ≤ λk+r(A), for
k = 1, 2, ..., n−r. By taking k = 1, B = X and A = X ′′−X ,
we have λ1(X

′′) = λ1((X
′′−X)+X) ≤ λr+1(X

′′−X) < 0,
by the eigenvalue assumption for X ′′−X . But then X ′′ is not



a positive semidefinite matrix. This contradiction shows that X
is the only element in the the set {X ′ | A(X ′) = A(X), X ′ ≽
0, X ′ ∈ Sn}.

Necessity: we need to show that if there exists a nontrivial
symmetric matrix (say Y ), with its upper triangular part from
the null space of the linear operator A∗, has at most r negative
eigenvalues, then we can find an X such that {X ′ | A(X ′) =
A(X), X ′ ≽ 0, X ′ ∈ Sn} is not a singleton. Indeed, since Y
is a symmetric matrix, it can be diagonalized by some unitary
matrix U , namely Y = UΛU−1, where Λ is a diagonal matrix
with Λi,i = λi(Y ). We then pick X = UΛ′U−1, where Λ′

is a diagonal matrix, and Λ′
i,i > max{−λi, 0} for 1 ≤ i ≤ r

and Λ′
i,i = 0 for i > r. Thus X is a positive semidefinite

matrix with rank no larger than r (note that the eigenvalues of
Λ′ are not necessarily arranged in nondecreasing order with
respect to i ). Then obviously X + Y = UΛ′′U−1, where the
diagonal entries in the diagonal matrix Λ′′ = Λ′ + Λ are all
nonnegative. Since Y is not a all-zero matrix, X + Y is an
element in the set {X ′ | A(X ′) = A(X), X ′ ≽ 0, X ′ ∈ Sn}
besides X .

Theorem 5 establishes the necessary and sufficient condition
for the uniqueness of low-rank positive semidefinite solution
under compressed linear measurements. However, checking
this condition for a specific set of linear measurements seems
to be a hard problem and, in addition, it is not clear whether
asymptotically there exist such linear compressed measure-
ments satisfying the given condition. So in Section III-B,
we will investigate whether a set of linear measurements
(namely the linear measurement A∗(·)) sampled from a certain
distribution will satisfy this condition.

B. The Null Space Analysis of the Gaussian Ensemble

We say that the linear operator A∗(X⊥) : R
n(n+1)

2 → Rm

is sampled from an independent Gaussian ensemble if its i-th
(1 ≤ i ≤ m) operation, denoted by A∗

i (X
⊥) : R

n(n+1)
2 → R,

is the inner product ⟨X,Ai⟩ = trace(XTAi), where Ai is an
n × n symmetric matrix with independent random elements
in its upper triangular part. The diagonal elements of Ai are
distributed as real Gaussian random variables N(0, 1). The off-
diagonal elements of Ai are distributed as N(0, 1

2 ). Across the
index i, the Ai’s are also sampled independently. One main
result of this paper is stated in the following theorem.

Theorem 6. Consider a linear operator A∗ : R
n(n+1)

2 →
Rm sampled from an independent Gaussian ensemble. Let
m = α × n(n+1)

2 . Then there exists a constant α < 1,
independent of n, such that with overwhelming probability as
n goes to ∞, any nonzero symmetric n × n square matrix
with its upper triangular part from the null space of the
linear operator A∗ has at least ξn negative eigenvalues,
where ξ > 0 is a constant that is independent of n. Thus
with overwhelmingly high probability, any positive semidefinite
matrix of rank no larger than ξn− 1 will be the singleton in
the set {X ′ | A(X ′) = A(X), X ′ ≽ 0, X ′ ∈ Sn}.

Note that in Theorem 6, the constant ξ depends on α.
Theorem 6 confirms that there indeed exists a sequence of

linear operators such that every nonzero element in their
null spaces necessarily generates a symmetric matrix having
a sufficiently large number (ξn) of negative eigenvalues.
The “guaranteed” number of negative eigenvalues is highly
nontrivial in the sense that ξn grows proportionally with n
while the null space for the linear operator A∗ has dimension
at least (1 − α)n(n+1)

2 , which grows proportionally with n2.
This seems counterintuitive at first sight: a null space of such
a large dimension should have been able to accommodate at
least one point which generates a symmetric matrix with very
few or even none negative eigenvalues.

The main difficulty in proving Theorem 6 is to show that for
all the nonzero symmetric matrices generated from the points
in the null space of the random linear operator A∗, the claimed
fact holds universally with overwhelming probability. This
seems to be a daunting job since the null space of every linear
operator is a continuous object and there are uncountably
many symmetric matrices that can be generated from it. In
fact, we have the following probabilistic characterization with
a shortened proof for the null space of the linear operator
sampled from the independent Gaussian Ensemble.

Lemma 3. If the linear operator A∗(X) : R
n(n+1)

2 → Rm is
sampled from independent Gaussian Ensemble, by represent-
ing the vectors from the null space of A∗ by n(n+1)

2 ×1 column
vectors, the distribution of its null space is (almost everywhere)
equivalent to the distribution of a (n(n+1)

2 −m)-dimensional
subspace in R

n(n+1)
2 whose basis can be represented by

a n(n+1)
2 × (n(n+1)

2 − m) matrix Z whose elements are
independent Gaussian random variables, N(0, 1) for elements
in the rows corresponding to the n diagonal elements of X
and N(0, 1

2 ) for elements in the rows corresponding to the
n(n−1)

2 off-diagonal elements.

Proof: This lemma follows from the fact that a random
matrix with zero mean i.i.d. Gaussian distributed entries gen-
erates a random subspace whose distribution is rotationally
invariant (namely the distribution of that random subspace
does not change when it is rotated by a unitary rotation). We
also note that if a random subspace has a rotationally invariant
distribution, its null space also has a rotationally invariant
distribution, which again can be generated by a matrix with
zero mean i.i.d. Gaussian distributed entries of appropriate
dimensions (with probability 1, the dimension of this null
space is (n(n+1)

2 −m)). With a normalization for the variance
of the Gaussian distributed entries, we have this lemma.

By Lemma 3, the null space of the linear operator A∗

sampled from independent Gaussian Ensemble can be rep-
resented by {z | z = Zw,w ∈ R

n(n+1)
2 −m}, where Z is a

n(n+1)
2 × (n(n+1)

2 −m) matrix as mentioned in Lemma 3.
We should first notice that in order to prove the property

that “any nonzero symmetric n × n square matrix with its
upper triangular part from the null space of the linear operator
A∗ has at least ξn negative eigenvalue” , we only need to
restrict our attention to prove that property for the set of
symmetric matrices generated by the set of points {z | z =
1√
n
Zw,w ∈ R

n(n+1)
2 −m, ∥w∥2 = 1}, in the null space of the

linear operator A∗.



Building on this observation, we can proceed to divide the
formal proof of Theorem 6 into three steps. Firstly, since we
can not show directly our theorem for every point in the null
space, instead we first try to discretize the sphere {w | ∥w∥2 =

1,w ∈ R
n(n+1)

2 −m} into a finite ϵ-net consisting of a finite
number of points on the sphere such that every point in the
set {w | ∥w∥2 = 1,w ∈ R

n(n+1)
2 −m} is in the ϵ (in terms of

Euclidean distance) neighborhood of at least one point from
the ϵ-net. Formally, an ϵ-net is a subset S ⊂ {w | ∥w∥2 =

1,w ∈ R
n(n+1)

2 −m} such that for every point t in the set
{w | ∥w∥2 = 1,w ∈ R

n(n+1)
2 −m}, one can find s in S such

that ∥t−s∥2 ≤ ϵ. The following lemma is well known in high
dimensional geometry about the size estimate of such a ϵ-net,
for example, see [21]:

Lemma 4. There is an ϵ-net S of the unit sphere of R
n(n+1)

2 −m

of cardinality less than (1 + 2
ϵ )

n(n+1)
2 −m, which is no larger

than e
n(n+1)−2m

ϵ .

Secondly, using the large deviation technique or concentra-
tion of measure result, we establish the relevant properties for
the symmetric matrices generated from these discrete points on
the ϵ-net, e.g., the symmetric matrices have a large number of
negative eigenvalues with overwhelming probability. Thirdly,
we show how property guarantees on the ϵ-net can be used
to establish the null space property for the whole null space
of the linear operator A∗. Section III-C and III-D are then
devoted to completing these steps to prove Theorem 6.

C. Concentration for a Single Point

We take any point w from the ϵ-net for the set {w | ∥w∥2 =

1,w ∈ R
n(n+1)

2 −m} and its corresponding point z = 1√
n
Zw

in the null space of the linear operator A∗, where Z is the
random basis as mentioned in Lemma 3. We argue that the
symmetric matrix G with upper triangular part generated from
z has many negative eigenvalues with overwhelming probabil-
ity. Obviously with the i.i.d. Gaussian probabilistic model for
Z, the elements of G are independently Gaussian distributed
N(0, 1

n ) random variables on the diagonal and independently
Gaussian distributed N(0, 1

2n ) on the off-diagonal.

Theorem 7. The smallest α1n (α1 < 1
2 ) eigenvalues of the

symmetric matrix G with its upper triangular part generated
from z will be upper bounded by c+δ with overwhelming prob-
ability 1−e−c1n

2

, where c is a negative number as determined
from the semicircular law α1 = 1

π

∫ c

−∞ 1|x|<
√
2

√
2− x2 dx, δ

is an arbitrarily small positive number, c1 is a positive constant
as a function of c and δ but independent of n, and 1 is the
indicator function.

Proof: Indeed Theorem 7 can be derived from known
large deviations or concentration of measure results for the
empirical eigenvalue distribution of random symmetric Gaus-
sian matrix [1] [18]. The proof strategy is to show that the
probability distributions for eigenvalues where the smallest
α1n eigenvalues are not upper bounded by c + δ will be in
a set of small measure. Obviously, G has n real eigenvalues
(λi)1≤i≤n arranged in a nondecreasing order and its spectral

measure µ̂n , 1
n

∑n
i=1 δλi =

1
n

∑n
i=1 δ(λ−λi), where δ(·) is

the delta function. As in [1], we denote the space of probability
measure on R as M+

1 (R) and will endow M+
1 (R) with

its usual weak topology. [1] then gives the following large
deviation result for the empirical eigenvalue distribution for
the matrix G,

Theorem 8 ([1]). Let µ ∈ M+
1 (R), define the rate function

I1(µ) =
1

2
(

∫
x2 dµ(x)− Σ(µ))− 3

8
− 1

4
log(2),

where Σ(µ) is the non commutative entropy Σ(µ) =∫ ∫
log(|x− y|) dµ(x) dµ(y). Then

• – I1 is well defined over the set M+
1 (R) and takes its

value in [0,+∞);
– I1(µ) is infinite as long as µ satisfies the following:

∗
∫
x2 dx = +∞

∗ there exists a subset A of R with a positive µ
mass but null logarithmic capacity, i.e. a set A
such that µ(A) > 0 and

γ(A) = exp{− inf
ν∈M+

1 (R)

∫ ∫
log(

1

|x− y|
) dν(x) dν(y)} = 0

– I1(µ) is a good rate function, namely {I1(µ) ≤ M}
is a compact subset of M+

1 (R) for M ≥ 0.
– I1 is a convex function on M+

1 (R).
– I1 achieves its minimum value at a unique probabil-

ity measure on R which is described by the Wigner’s
Semicircle Law.

• The law of the spectral measure µ̂n = 1
n

∑n
i=1 δλi

satisfies a full large deviation principle with good rate
function I1 and in the scales n2, that is, for any open
subset O of M+

1 (R),

lim inf
n→∞

1

n2
log(P (µ̂n ∈ O)) ≥ − inf

O
I1

for any closed subset F of of M+
1 (R),

lim sup
n→∞

1

n2
log(P (µ̂n ∈ F )) ≤ − inf

F
I1

We take c and determine α1 from the semicircular law
as in the statement of Theorem 7. Then the set A(µ̂n) of
spectral measures satisfying the statement of Theorem 7 can
be denoted by {µ̂n : 1

n

∑n
i=1 1λi≤c+δ > α1}, whose

complement (in the set of n-dimensional spectral measure)
is then {µ̂n : 1

n

∑n
i=1 1λi≤c+δ ≤ α1}.

Now we take a continuous function f equal to 1x≤c over
the region (−∞, c], equal to 0 on [c + δ,+∞), and linear in
between over the region [c, c + δ]. Then the complement of
A(µ̂n) is a subset of the following:

{µ̂n :
1

n

n∑
i=1

f(λi) ≤ α1} = {µ̂n : µ̂n(f) ≤ α1}

⊆ {µ : µ(f) ≤ α1} , B(µ),

where µ̂n = 1
n

∑n
i=1 δλi , µ ∈ M+

1 , and µ(f) is the integral
of the function f over µ.



This set B(µ) is closed for the weak topology and so we
can apply the large deviation principle as in [1] to get that

lim sup
n→∞

1

n2
logP ({ 1

n

n∑
i=1

1λi≤c+δ ≤ α1}) ≤ − inf
B(µ)

I,

with I as defined in Theorem 8. However, from the definition
of α1 and the function f , we simply know that the semi-circle
law does not belong to the set B(µ) and so we can conclude
that infB(µ) I > 0. This is because the rate function I is a
good rate function which achieves its unique minimum at the
semicircle law. So in summary, we can take c1 in the statement
of this theorem as infB(µ) I .

Following Theorem 7, we know that with overwhelming
probability, the symmetric matrix generated from a single
point on the ϵ-net will be very likely to have a large number
(proportional to n) of negative eigenvalues. In Section III-D,
we will show how to synthesize the results for isolated points
so that we can prove the eigenvalue claim for the null space
of the linear operator A∗.

D. Concentration for the Null Space: ϵ-net Analysis

Building on the concentration results for the single point
on the ϵ-net, we now begin proving the claims in Theorem
6 for all the possible symmetric matrices generated from the
set {z | z = Zw,w ∈ R

n(n+1)
2 −m}, where Z is a n(n+1)

2 ×
(n(n+1)

2 −m) matrix as mentioned in Lemma 3.
First, we make a simple observation regarding every point

w on the Euclidean sphere {w | ∥w∥2 = 1,w ∈ R
n(n+1)

2 −m}.
Since S is an ϵ-net on the sphere, we can find a point w0 ∈

S with ∥w0∥2 = 1 such that ∥w − w0∥2 ≤ ϵ. For the error
term w−w0, we can still find a point w1 on the ϵ-net S such
that ∥w − w0 − ∥w − w0∥2w1∥2 ≤ ϵ∥w − w0∥2 ≤ ϵ2. By
iterating this process, we get that any w on the unit Euclidean
sphere can be expressed as

w = w0 +
∞∑
i=1

tiwi, (III.2)

where |ti| ≤ ϵi for i ≥ 1 and wi ∈ S for i ≥ 0.
Before we proceed further to look at the spectrum of

the symmetric matrix Bw generated from Zw, we state the
following theorem by Hoffmann and Wielandt [19].

Theorem 9 ([19]). Let A, E ∈ Mn, assume that A and A+E
are both normal, let λ1, ..., λn be the eigenvalues of A in some
given order, and let λ̂1, ..., λ̂n be the eigenvalues of A+E in
some order. Then there exists a permutation σ(i) of the integers
1, 2, ..., n such that

(∑n
i=1 |λ̂σi

− λi|2
) 1

2 ≤ ∥E∥2.

Now we can give a closer study of the n×n symmetric ma-
trix Bw generated from 1√

n
Zw. From the ϵ-net decomposition

(III.2), it follows that Bw = Bw0 +
∑n

i=1 tiBwi , where Bwi

is the symmetric matrix generated from 1√
n
Zwi for i ≥ 0.

Since we can thus view Bw as Bw0 plus some perturbation,
using Theorem 9, there exists a permutation σ of the integers

1, 2, ..., n such that( n∑
i=1

|λ̂σi − λi|2
) 1

2 ≤ ∥
n∑

i=1

tiBwi∥2, (III.3)

where λ̂i, 1 ≤ i ≤ n, and λi, 1 ≤ i ≤ n, are the eigenvalues of
the Bw and Bw0 arranged in an increasing order, respectively.

But from the triangular inequality, we know

∥
n∑

i=1

tiBwi
∥2 ≤

n∑
i=1

|ti|∥Bwi
∥2

≤
n∑

i=1

ϵiC1

√
n ≤ ϵC1

√
n

1− ϵ
, (III.4)

where we use the condition that, with overwhelmingly high
probability as n → ∞, ∥Bw′∥2 is upper bounded by C1

√
n

simultaneously for all w′ ∈ S by choosing α = 2m
n(n+1)

appropriately (which we will show soon), where C1 >√
(E∥Bw′∥22)/n is a chosen constant. Note that C1 can be

a constant because E∥Bw′∥22 scales as O(n) and is the same
for every w′ ∈ S .

We pick c < 0, small enough δ > 0 such that c+δ < 0, and
let α1 be determined from c > 0 as in Theorem 7. Assume also
that the smallest α1n eigenvalues of Bw0 is upper bounded
by c+ δ. We can then officially argue that the number, say k,
of negative eigenvalues of Bw, can not be small. In particular,
we will upper bound (α1n−k) for Bw. For whatever ordering
σ the eigenvalues of Bw take,

n∑
i=1

|λ̂σi − λi|2 ≥ (α1n− k)|c+ δ|2, (III.5)

because at least (α1n−k) negative eigenvalues (which are all
smaller than c + δ) of Bw0 will be matched to nonnegative
eigenvalues of Bw in Theorem 9.

Connecting (III.3), (III.4) and (III.5), if (α1n−k) ≥ 0, (oth-
erwise k already nicely bounded), then

√
(α1n− k)|c+ δ|2 ≤

ϵC1
√
n/(1 − ϵ), namely, k ≥ α1n − ϵ2C2

1n
(1−ϵ)2|c+δ|2 . If we pick

ϵ > 0 small enough, the number of negative eigenvalues of
Bw will be proportionally growing with n.

We have shown that, if for all w′ ∈ S, ∥Bw′∥2 is upper
bounded by C1

√
n, and the smallest α1n eigenvalues of Bw′

are upper bounded by c + δ, then the number of negative
eigenvalues of every nonzero matrix from the null space would
be at least k ≥ α1n − ϵ2C2

1n
(1−ϵ)2|c+δ|2 . However, these two

regularity conditions indeed will happen with overwhelming
probability by choosing α = 2m

n(n+1) appropriately.
From Theorem 7, for a w′ ∈ S, with probability at most

e−c1n
2

, (where c1 > 0 is a constant determined solely by
c < 0 and δ > 0), the smallest α1n eigenvalues of Bw′ are
upper bounded by c+ δ. Also, by a standard Chernoff bound
or a large deviation argument, for a w′ ∈ S, ∥Bw′∥2 > C1

√
n

happens with probability at most e−c2n
2

, where c2 > 0 is a
constant that depends only on C1.

Now by a union bound over the ϵ-net, which has at most
e

n(n+1)−2m
ϵ discrete points, the two regularity conditions will

happen with overwhelming probability, if n(n+1)−2m
ϵ −c1n

2 <

0 and n(n+1)−2m
ϵ − c2n

2 < 0, namely, α = 2m
n(n+1) > 1− ϵc2



and α = 2m
n(n+1) > 1 − ϵc1. We can achieve this by taking

m large enough, but still keeping α = 2m
n(n+1) < 1, since we

have ϵ > 0, c1 > 0 and c2 > 0.
It is necessary to clarify the relationships between the

variables c, δ, α1, c1, C1, c2, ϵ and α. We first pick c < 0 and
then pick δ > 0 as another small number such that c+ δ < 0.
As we state in Theorem 7 and its proof, α1 > 0 is determined
completely by c from the semicircular law; c1 can be solely

characterized as a function of c and δ. C1 >

√
E∥Bw′∥2

2

n is
another independent constant which we pick, and the exponent
c2 is determined solely from C1 using the large deviation
principle. We then pick ϵ > 0 such that α1 >

ϵ2C2
1

(1−ϵ)2|c+δ|2 . In
justifying the two regularity conditions, we finally determine
α = 2m

n(n+1) appropriately to let the union bound exponent
overridden by the two decaying exponents c1 and c2.

Thus, we have arrived at a complete proof of Theorem 6.

IV. SIMULATION

In the vector case, we generate a random 0-1 matrix
Am×n with i.i.d. entries and empirically study the uniqueness
property and the success of ℓ1 minimization for nonnegative
vectors with different sparsity. Each entry of A takes value 1
with probability 0.2 and value 0 with probability 0.8. The size
of A is 50 × 200 and 100 × 200 respectively. For a sparsity
k, we select a support set S with size |S| = k uniformly
at random, and generate a nonnegative vector x0 on S with
i.i.d. entries uniformly on the unit interval. Then we check
whether U , {x | Ax = Ax0,x ≥ 0} is singleton. This
can be realized as follows. We minimize and maximize the
same objective function dTx over U , where d is a random
vector in Rn. Note that if U is not a singleton, then the set
{d ∈ Rn | dTx = dTx0,∀x ∈ U} has measure 0. Thus
the probability that the minimizer and the maximizer are the
same when U is not a singleton is 0. We generate several
different d’s and claim U to be singleton if the minimizer and
the maximizer are the same for every d. For each instance,
we also check whether ℓ1 minimization can recover x0 from
Ax0 or not. Under a given sparsity k, we generate 200 x0’s
and repeat the above procedure 200 times.

We fix n = 200, and m is 50 in Fig. 2(a) and 100 in
Fig. 2(b). When m

n increases from 1
4 to 1

2 , the support size
of a sparse vector which is a unique nonnegative solution
increases from 0.05n to 0.19n. Note that when m

n = 1
2 , for

this 0-1 matrix, the singleton property still exists linearly in
n, while for a random Gaussian matrix, with overwhelming
probability no vector can be a unique nonnegative solution.
Besides, the thresholds where the singleton property breaks
down and where the fully recovery of ℓ1 minimization breaks
down are quite close.

In the matrix case, we generate a 40 × 40 matrix G such
that all the elements are i.i.d. N(0, 1), then A = 1

2 (G+GT )
has its diagonal elements distributed as N(0, 1) and off-
diagonal elements distributed as N(0, 1

2 ). We generate m
such matrices Ai’s as the linear operator A∗, m is 500 and
600 respectively for comparison. X is a low-rank positive
semidefinite symmetric matrix. We increase the rank of X
from 0 to 0.4n, and for each fixed rank, generate 200 X’s

randomly. For each X , we minimize and maximize the same
objective function ⟨D,X ′⟩ over the set V , {X ′ | A(X ′) =
A(X), X ′ ≽ 0, X ′ ∈ Sn}, where D is random matrix with
i.i.d. N(0, 1) entries. Similarly to the vector case, if V is not
a singleton, then the set {D | ⟨D,X ′⟩ = ⟨D,X⟩,∀X ′ ∈ V }
has measure 0. Thus the probability that the minimizer and
the maximizer are the same when V is not a singleton is 0.
We generate several different D’s and claim the set V to be
a singleton if the minimizer and the maximizer of ⟨D,X ′⟩
from the set {X ′ | A(X ′) = A(X), X ′ ≽ 0, X ′ ∈ Sn} are
the same for every D. As indicated by Fig. 3, when m = 500,
the singleton property holds if rank(X) is at most 2, which is
0.05n. When m increases to 600, the singleton property holds
if rank(X) is at most 8, which is 0.2n.

V. CONCLUSION

This paper studies the phenomenon that an underdetermined
system admits a unique nonnegative vector solution or a
unique positive semidefinite matrix solution. This uniqueness
property can potentially lead to more efficient sparse recovery
algorithms. We show that only for a class of matrices with
a row span intersecting the positive orthant that {x | Ax =
Ax0,x ≥ 0} could possibly be a singleton if x0 is sparse
enough. Among these matrices, we are interested in 0-1
matrices which fit the setup of network inference problems.
For Bernoulli 0-1 matrices, we prove that with high probability
the unique solution property holds for all k-sparse nonnegative
vectors where k is O(n), instead of the previous result O(

√
n).

For the adjacency matrix of a general expander, the same
phenomenon exists and we further provide a closed-form
constant ratio of k to n. One future direction is to obtain
uniqueness property threshold for a given measurement matrix.
So far, we have only discussed the ideally sparse nonnegative
vectors, but we would also like to consider recovering ap-
proximately sparse nonnegative signal vectors. In approximate
sparse recovery problems, instead of being a singleton, the
feasible set can contain an infinite number of solutions, but
we conjecture its measure is “small”.

For the matrix case, we develop a necessary and sufficient
condition for a linear compressed operator to admit a unique
feasible positive semidefinite matrix solution. We further show
that this condition will be satisfied with overwhelmingly
high probability for a randomly generated Gaussian linear
compressed operator with vastly different approaches from
those used in vector case. Computing explicitly the threshold
ξ as a function of α, for the uniqueness property to happen
will be one part of future works.
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