The Limits of Error Correction with l_{p} Decoding

Meng Wang Weiyu Xu Ao Tang
School of ECE, Cornell University, Ithaca, NY 14853, USA

Abstract

An unknown vector f in \mathbf{R}^{n} can be recovered from corrupted measurements $y=A f+e$ where $A^{m \times n}(m \geq n)$ is the coding matrix if the unknown error vector e is sparse. We investigate the relationship of the fraction of errors and the recovering ability of l_{p}-minimization ($0<p \leq 1$) which returns a vector x minimizing the " l_{p}-norm" of $y-A x$. We give sharp thresholds of the fraction of errors that determine the successful recovery of f. If e is an arbitrary unknown vector, the threshold strictly decreases from 0.5 to $\mathbf{0 . 2 3 9}$ as p increases from 0 to 1 . If e has fixed support and fixed signs on the support, the threshold is $\frac{2}{3}$ for all p in $(0,1)$, while the threshold is $\mathbf{1}$ for l_{1}-minimization.

I. Introduction

We consider recovering a vector f in \mathbf{R}^{n} from corrupted measurements $y=A f+e$, where $A^{m \times n}(m \geq n)$ is the coding matrix and e is an arbitrary and unknown vector of errors. Obviously, if the fraction of the corrupted entries is too large, there is no hope of recovering f from $A f+e$. However, if the fraction of corrupted measurements is small enough, one can actually recover f from $y=A f+e$. As the sparsity of e is represented by the l_{0} norm, $\|e\|_{0}:=\left|\left\{i: e_{i} \neq 0\right\}\right|$, one natural way is to find a vector x such that the number of terms where y and $A x$ differ is minimized. Mathematically, we solve the following l_{0}-minimization problem:

$$
\begin{equation*}
\min _{x \in \mathbf{R}^{n}}\|y-A x\|_{0} \tag{1}
\end{equation*}
$$

However, (1) is combinatorial and computationally intractable, and one commonly used approach is to solve a closely related l_{1}-minimization problem:

$$
\begin{equation*}
\min _{x \in \mathbf{R}^{n}}\|y-A x\|_{1} \tag{2}
\end{equation*}
$$

where $\|x\|_{1}:=\sum_{i}\left|x_{i}\right|$. (2) can be recast as a linear program, thus can be solved efficiently. Conditions under which (2) can successfully recover f have been extensively studied in the literature of compressed sensing ([1]-[6]). For example, [3] gives a sufficient condition known as the Restricted Isometry Property (RIP).

Recently, there has been great research interest in recovering f by l_{p}-minimization for $p<1$ ([7]-[11]) as follows,

$$
\begin{equation*}
\min _{x \in \mathbf{R}^{n}}\|y-A x\|_{p}^{p} \tag{3}
\end{equation*}
$$

Recall that $\|x\|_{p}^{p}:=\left(\sum_{i}\left|x_{i}\right|^{p}\right)$ for $p>0$. We say f can be recovered by l_{p}-minimization if and only if it is the unique solution to (3). Then the question is what is the relationship between the sparsity of the error vector and the successful recovery with l_{p}-minimization? (3) is non-convex, and thus it is generally hard to compute the global minimum. However,
[7] shows numerically that we can recover f by finding a local minimum of (3), and l_{p}-minimization outperforms l_{1} minimization in terms of the sparsity restriction for e. [9] extends RIP to l_{p}-minimization and analyzes the ability of l_{p}-minimization to recover signals from noisy measurements. [11] also provides a condition for the success recovery via l_{p}-minimization, which can be generalized to L_{1} case. Both conditions are sufficient but not necessary, and thus are too restrictive in general.

Let $e \in \mathbf{R}^{m}$ be an arbitrary and unknown vector of errors on support $T=\left\{i: e_{i} \neq 0\right\}$. We say e is ρm-sparse if $|T| \leq \rho m$ for some $\rho<1$ where $|T|$ is the cardinality of set T. Our main contribution is a sharp threshold $\rho^{*}(p)$ for all $p \leq 1$ such that for $\rho<\rho^{*}(p)$, if $m \geq C n$ for some constant C and the entries of A are i.i.d. Gaussian, then $l_{p^{-}}$ minimization can recover f with overwhelming probability. We provide two thresholds: one $\left(\rho^{*}\right)$ is for the case when e is an arbitrary unknown vector, and the other $\left(\rho_{w}^{*}\right)$ assumes that e has fixed support and fixed signs. In the latter case, the condition of successful recovery with l_{1}-minimization from any possible error vector is the same, while the condition of successful recovery with l_{p}-minimization $(p<1)$ from different error vectors differs. Using worst-case performance as criterion, we prove that though l_{p} outperforms l_{1} in the former case, it is not comparable to l_{1} in the latter case. Both bounds ρ^{*} and ρ_{w}^{*} are tight in the sense that once the fraction of errors exceeds ρ^{*} (or ρ_{w}^{*}), l_{p}-minimization can be made to fail with overwhelming probability. Our technique stems from [12], which only focuses on l_{1}-minimization and the case that e is arbitrary.

II. Recovery From Arbitrary Error vector

In this section, we shall give a function $\rho^{*}(p)$ such that for a given p, for any $\rho<\rho^{*}(p)$, when the entries of A are i.i.d. Gaussian, the l_{p}-minimization can recover f with overwhelming probability as long as the error e is ρm-sparse.

The following theorem gives an equivalent condition for the success of l_{p} minimization ([7], [8]).

Theorem 1 ([7], [8]). f is the unique solution to l_{p} minimization problem $(0<p \leq 1)$ for every f and for every ρm-sparse e if and only if

$$
\begin{equation*}
\sum_{i \in T}\left|(A z)_{i}\right|^{p}<\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p} \tag{4}
\end{equation*}
$$

for every $z \in \mathbf{R}^{n}$, and every support T with $|T| \leq \rho m$.
One important property is that if the condition (4) is satisfied for some $0<p \leq 1$, then it is also satisfied for all $0<q \leq p$
([10]). Now we define the threshold of successful recovery ρ^{*} as a function of p.

Lemma 1. Let $X_{1}, X_{2}, \ldots, X_{m}$ be i.i.d $N(0,1)$ random variables and let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be the sorted ordering (in nonincreasing order) of $\left|X_{1}\right|^{p},\left|X_{2}\right|^{p}, \ldots,\left|X_{m}\right|^{p}$ for some $p \in(0,1]$. For a $\rho>0$, define S_{ρ} as $\sum_{i=1}^{\lceil\rho m\rceil} Y_{i}$. Let S denote $E\left[S_{1}\right]$, the expected value of S_{1}. Then there exists a constant $\rho^{*}(p)$ such that $\lim _{m \rightarrow \infty} \frac{E\left[S_{\rho^{*}}\right]}{S}=\frac{1}{2}$.

Proof: Let $X \sim N(0,1)$ and let $Z=|X|$. Let $f(z)$ denote the p.d.f. of Z and $F(z)$ be its c.d.f. Define $g(t)=$ $\int_{t}^{\infty} z^{p} f(z) d z . g$ is continuous and decreasing in $[0, \infty]$, and $g(0)=E\left[Z^{p}\right]=\frac{S}{m}, \lim _{t \rightarrow \infty} g(t)=0$. Then there exists z^{*} such that $g\left(z^{*}\right)=\frac{g(0)}{2}$, we claim that $\rho^{*}=1-F\left(z^{*}\right)$ has the desired property.

Let $T_{t}=\sum_{i: Y_{i} \geq t^{p}} Y_{i}$. Then $E\left[T_{z^{*}}\right]=m g\left(z^{*}\right)$. Since $E\left[\left|T_{z^{*}}-S_{\rho^{*}}\right|\right]$ is bounded by $O(\sqrt{m})$, and $S=m g(0)$, thus $\lim _{m \rightarrow \infty} \frac{E\left[S_{\rho^{*}}\right]}{S}=\frac{1}{2}$.

Proposition 1. The function $\rho^{*}(p)$ is strictly decreasing in p on $(0,1]$.

Proof: From the definition of z^{*} and $\rho^{*}(p)$, we have

$$
\begin{equation*}
H\left(z^{*}, p\right):=\int_{0}^{z^{*}} x^{p} f(x) d x-\int_{z^{*}}^{\infty} x^{p} f(x) d x=0 \tag{5}
\end{equation*}
$$

and

$$
\rho^{*}=1-F\left(z^{*}\right)
$$

where $f(\cdot)$ and $F(\cdot)$ are the p.d.f. and c.d.f. of $|X|, X \sim$ $N(0,1)$.

From the Implicit Function Theorem,
$\frac{d z^{*}}{d p}=-\frac{\frac{\partial H}{\partial p}}{\frac{\partial H}{\partial z^{*}}}=-\frac{\int_{0}^{z^{*}} x^{p}(\ln x) f(x) d x-\int_{z^{*}}^{\infty} x^{p}(\ln x) f(x) d x}{2 z^{* p} f\left(z^{*}\right)}$
From the chain rule, we know $\frac{d \rho^{*}}{d p}=\frac{d \rho^{*}}{d z^{*}} \frac{d z^{*}}{d p}$, thus

$$
\begin{equation*}
\frac{d \rho^{*}}{d p}=\frac{\int_{0}^{z^{*}} x^{p}(\ln x) f(x) d x-\int_{z^{*}}^{\infty} x^{p}(\ln x) f(x) d x}{2 z^{* p}} \tag{6}
\end{equation*}
$$

Note the numerator of (6) is less than 0 from (5), thus $\frac{d \rho^{*}}{d p}<$ 0.

We plot ρ^{*} against p numerically in Fig. 1. $\rho^{*}(p)$ goes to $\frac{1}{2}$ as p tends to zero. Note that $\rho^{*}(1)=0.239 \ldots$, which coincides with the result in [12].

Now we proceed to prove that ρ^{*} is the threshold of successful recovery with l_{p} minimization for p in $(0,1]$. First we state the concentration property of S_{ρ} in the following lemma.

Lemma 2. For any $p \in(0,1]$, let $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}, S_{\rho}$ and S be as above. For any $\rho>0$ and any $\delta>0$, there exists a constant $c_{1}>0$ such that when m is large enough, with probability at least $1-2 e^{-c_{1} m},\left|S_{\rho}-E\left[S_{\rho}\right]\right| \leq \delta S$.

Fig. 1. Threshold ρ^{*} of successful recovery with l_{p}-minimization

Proof: Let $X=\left[X_{1}, \ldots, X_{m}\right]^{T}$. If two vectors X and X^{\prime} only differ in co-ordinate i, then for any $p, \mid S_{\rho}(X)-$ $S_{\rho}\left(X^{\prime}\right)\left|\leq \| X_{i}\right|^{p}-\left|X_{i}^{\prime}\right|^{p} \mid$. Thus for any X and X^{\prime},

$$
\left|S_{\rho}(X)-S_{\rho}\left(X^{\prime}\right)\right| \leq\left.\sum_{i: X_{i} \neq X_{i}^{\prime}}| | X_{i}\right|^{p}-\left|X_{i}^{\prime}\right|^{p}\left|=\sum_{i}\right|\left|X_{i}\right|^{p}-\left|X_{i}^{\prime}\right|^{p} \mid
$$

Since $\left|\left|X_{i}\right|^{p}-\left|X_{i}^{\prime}\right|^{p}\right| \leq\left|X_{i}-X_{i}^{\prime}\right|^{p}$ for all $p \in(0,1]$,

$$
\begin{equation*}
\left|S_{\rho}(X)-S_{\rho}\left(X^{\prime}\right)\right| \leq \sum_{i}\left|X_{i}-X_{i}^{\prime}\right|^{p} \tag{7}
\end{equation*}
$$

From the isoperimetric inequality for the Gaussian measure ([13]), for any set A with measure at least a half, the set $A_{t}=\left\{x \in \mathbf{R}^{m}: d(x, A) \leq t\right\}$ has measure at least $1-e^{-t^{2} / 2}$, where $d(x, A)=\inf _{y \in A}\|x-y\|_{2}$. Let M_{ρ} be the median value of $S_{\rho}=S_{\rho}(X)$. Define set $A=\left\{x \in \mathbf{R}^{m}: S_{\rho}(x) \leq M_{\rho}\right\}$, then

$$
\operatorname{Pr}[d(x, A) \leq t] \geq 1-e^{-t^{2} / 2}
$$

We claim that $d(x, A) \leq t$ implies that $S_{\rho}(x) \leq M_{\rho}+$ $m^{(1-p / 2)} t^{p}$. If $x \in A$, then $S_{\rho}(x) \leq M_{\rho}$, thus the claim holds as $m^{1-p / 2} t^{p}$ is non-negative. If $x \notin A$, then there exists $x^{\prime} \in A$ such that $\left\|x-x^{\prime}\right\|_{2} \leq t$. Let $u_{i}=1$ for all i and let $v_{i}=\left|x_{i}-x_{i}^{\prime}\right|^{p}$. From Hölder's inequality

$$
\begin{align*}
\sum_{i}\left|x_{i}-x_{i}^{\prime}\right|^{p} & \leq\left(\sum_{i}\left|u_{i}\right|^{2 /(2-p)}\right)^{1-p / 2}\left(\sum_{i}\left|v_{i}\right|^{2 / p}\right)^{p / 2} \\
& \leq m^{(1-p / 2)}\left(t^{2}\right)^{p / 2}=m^{(1-p / 2)} t^{p} \tag{8}
\end{align*}
$$

From (7) and (8), $\left|S_{\rho}(x)-S_{\rho}\left(x^{\prime}\right)\right| \leq m^{(1-p / 2)} t^{p}$. Since $x \notin A$ and $x^{\prime} \in A$, then $S_{\rho}(x)>M_{\rho} \geq S_{\rho}\left(x^{\prime}\right)$. Thus $S_{\rho}(x) \leq$ $M_{\rho}+m^{(1-p / 2)} t^{p}$, which verifies our claim. Then
$\operatorname{Pr}\left[S_{\rho}(x) \leq M_{\rho}+m^{(1-p / 2)} t^{p}\right] \geq \operatorname{Pr}[d(x, A) \leq t] \geq 1-e^{-t^{2} / 2}$.
Similarly,

$$
\operatorname{Pr}\left[S_{\rho}(x) \geq M_{\rho}-m^{(1-p / 2)} t^{p}\right] \geq 1-e^{-t^{2} / 2}
$$

Combining (9) and (10),

$$
\begin{equation*}
\operatorname{Pr}\left[\left|S_{\rho}(x)-M_{\rho}\right| \geq m^{(1-p / 2)} t^{p}\right] \leq 2 e^{-t^{2} / 2} \tag{11}
\end{equation*}
$$

The difference of $E\left[S_{\rho}\right]$ and M_{ρ} can be bounded as follows,

$$
\begin{aligned}
\left|E\left[S_{\rho}\right]-M_{\rho}\right| & \leq E\left[\left|S_{\rho}-M_{\rho}\right|\right] \\
& =\int_{0}^{\infty} \operatorname{Pr}\left[\left|S_{\rho}(x)-M_{\rho}\right| \geq y\right] d y \\
& \leq \int_{0}^{\infty} 2 e^{-\frac{1}{2} y^{\frac{2}{p}} m^{\left(1-\frac{2}{p}\right)}} d y \\
& =m^{\left(1-\frac{p}{2}\right)} \int_{0}^{\infty} 2 e^{-\frac{1}{2} s^{\frac{2}{p}}} d s
\end{aligned}
$$

Note that $c:=\int_{0}^{\infty} 2 e^{-\frac{1}{2} s^{(2 / p)}} d s$ is a finite constant for all $p \in(0,1]$. As $p>0$ and $S=m E\left[\left|x_{i}\right|^{p}\right]$, thus for any $\delta>0$, $c m^{\left(1-\frac{p}{2}\right)}<\frac{\delta}{2} S$ when m is large enough.

Let $t=\left(\frac{1}{2} \delta S m^{\left(\frac{p}{2}-1\right)}\right)^{\frac{1}{p}}=\left(\frac{1}{2} \delta E\left[\left|x_{i}\right|^{p}\right]\right)^{\frac{1}{p}} \sqrt{m}$, from (11) with probability at least $\left(1-2 e^{-\frac{1}{2}\left(\frac{1}{2} \delta E\left[\left|x_{i}\right|^{p}\right]\right)^{\frac{2}{p}}} m\right),\left|S_{\rho}-M_{\rho}\right|<$ $\frac{1}{2} \delta S$. Thus $\left|S_{\rho}-E\left[S_{\rho}\right]\right| \leq\left|S_{\rho}-M_{\rho}\right|+\left|M_{\rho}-E\left[S_{\rho}\right]\right|<\delta S$ with probability at least $1-2 e^{-c_{1} m}$ for some constant c_{1}.

Corollary 1. For any $\rho<\rho^{*}$, there exists $a \delta>0$ and a constant $c_{2}>0$ such that when m is large enough, with probability $1-2 e^{-c_{2} m}, S_{\rho} \leq\left(\frac{1}{2}-\delta\right) S$.

Proof: When $\rho<\rho^{*}$,

$$
\begin{aligned}
E\left[S_{\rho}\right] & =E\left[S_{\rho^{*}}\right]-\sum_{i=\lceil\rho m\rceil+1}^{\left\lceil\rho^{*} m\right\rceil} E\left[\left|X_{i}\right|^{p}\right] \\
& \leq E\left[S_{\rho^{*}}\right]-\left(\left\lceil\rho^{*} m\right\rceil-\lceil\rho m\rceil\right) E\left[\left|X_{i}\right|^{p}\right]
\end{aligned}
$$

Then $E\left[S_{\rho}\right] / S \leq \frac{1}{2}-2 \delta$ for a suitable δ as $S=m E\left[\left|X_{i}\right|^{p}\right]$. The result follows by combining the above with Lemma 2.

Corollary 2. For any $\epsilon>0$, there exists a constant $c_{3}>0$ such that when m is large enough, with probability $1-2 e^{-c_{3} m}$, it holds that $(1-\epsilon) S \leq S_{1} \leq(1+\epsilon) S$.

The above two corollaries indicate that with overwhelming probability the sum of the largest $\lceil\rho m\rceil$ terms of Y_{i} 's is less than half of the total sum S_{1} if $\rho<\rho^{*}$. The following lemma extends the result to every vector $A z$ where matrix $A^{m \times n}$ has i.i.d. Gaussian entries and z is any vector in \mathbf{R}^{n}.

Lemma 3. For any $0<p \leq 1$, given any $\rho<\rho^{*}(p)$, there exist constants $c_{4}, c_{5}, \delta>0$ such that when $m \geq c_{4} n$ and n is large enough, with probability $1-e^{-c_{5} n}$, an $m \times n$ matrix A with i.i.d. $N(0,1)$ entries has the following property: for every $z \in \mathbf{R}^{n}$ and every subset $T \subseteq\{1, \ldots, m\}$ with $|T| \leq \rho m$, $\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}-\sum_{i \in T}\left|(A z)_{i}\right|^{p} \geq \delta S\|z\|_{2}^{p}$.

Proof: For any given $\gamma>0$, there exists a γ-net K of cardinality less than $\left(1+\frac{2}{\gamma}\right)^{n}([13])$. A γ-net K is a set of points such that $\left\|v^{k}\right\|_{2}=1$ for all v^{k} in K and for any z with $\|z\|_{2}=1$, there exists some v^{k} such that $\left\|z-v^{k}\right\|_{2} \leq \gamma$.

Since A has i.i.d $N(0,1)$ entries, then $A v^{k}$ has m i.i.d. $N(0,1)$ entries. Applying a union bound to Corollary 1 and 2, we know that for some $\delta>0$ and for every $\epsilon>0$, with probability $1-2 e^{-c m}$ for some $c>0$, we have

$$
\begin{equation*}
S_{\rho}\left(A v^{k}\right) \leq\left(\frac{1}{2}-\delta\right) S \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\epsilon) S \leq S_{1}\left(A v^{k}\right) \leq(1+\epsilon) S \tag{13}
\end{equation*}
$$

hold for a vector v^{k} in K. Taking $m=c_{4} n$ for large enough c_{4}, from union bound we get that (12) and (13) hold for all the points in K at the same time with probability at least $1-e^{-c_{5} n}$ for some $c_{5}>0$.
For any z such that $\|z\|_{2}=1$, there exists v_{0} in K such that $\left\|z-v_{0}\right\|_{2} \triangleq \gamma_{1} \leq \gamma$. Let z_{1} denote $z-v_{0}$, then $\left\|z_{1}-\gamma_{1} v_{1}\right\|_{2} \triangleq$ $\gamma_{2} \leq \gamma_{1} \gamma \leq \gamma^{2}$ for some v_{1} in K. Repeating this process, we have

$$
z=\sum_{j \geq 0} \gamma_{j} v_{j}
$$

where $\gamma_{0}=1, \gamma_{j} \leq \gamma^{j}$ and $v_{j} \in K$.
Thus for any $z \in \mathbf{R}^{n}$, we have $z=\|z\|_{2} \sum_{j \geq 0} \gamma_{j} v_{j}$.
For any index set T with $|T| \leq \rho m$,

$$
\begin{aligned}
\sum_{i \in T}\left|(A z)_{i}\right|^{p} & =\|z\|_{2}^{p} \sum_{i \in T}\left|\left(\sum_{j \geq 0} \gamma_{j} A v_{j}\right)_{i}\right|^{p} \\
& \leq\|z\|_{2}^{p} \sum_{i \in T} \sum_{j \geq 0} \gamma^{j p}\left|\left(A v_{j}\right)_{i}\right|^{p} \\
& =\|z\|_{2}^{p} \sum_{j \geq 0} \gamma^{j p} \sum_{i \in T}\left|\left(A v_{j}\right)_{i}\right|^{p} \\
& \leq S\|z\|_{2}^{p} \frac{1-2 \delta}{2\left(1-\gamma^{p}\right)}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i}\left|(A z)_{i}\right|^{p} & =\|z\|_{2}^{p} \sum_{i}\left|\left(\sum_{j \geq 0} \gamma_{j} A v_{j}\right)_{i}\right|^{p} \\
& \geq\|z\|_{2}^{p} \sum_{i}\left(\left|\left(A v_{0}\right)_{i}\right|^{p}-\sum_{j \geq 1} \gamma_{j}^{p}\left|\left(A v_{j}\right)_{i}\right|^{p}\right) \\
& \geq\|z\|_{2}^{p}\left(\sum_{i}\left|\left(A v_{0}\right)_{i}\right|^{p}-\sum_{j \geq 1} \gamma^{j p} \sum_{i}\left|\left(A v_{j}\right)_{i}\right|^{p}\right) \\
& \geq\|z\|_{2}^{p}\left((1-\epsilon) S-\sum_{j \geq 1} \gamma^{j p}(1+\epsilon) S\right) \\
& \geq S\|z\|_{2}^{p} \frac{1-2 \gamma^{p}-\epsilon}{1-\gamma^{p}}
\end{aligned}
$$

Thus $\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}-\sum_{i \in T}\left|(A z)_{i}\right|^{p} \geq S\|z\|_{2}^{p} \frac{2 \delta-2 \gamma^{p}-\epsilon}{1-\gamma^{p}}$. For a given δ, we can pick γ and ϵ small enough such that $\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}-\sum_{i \in T}\left|(A z)_{i}\right|^{p} \geq \delta S\|z\|_{2}^{p}$.

We can now establish one main result regarding the threshold of successful recovery with l_{p}-minimization.

Theorem 2. For any $0<p \leq 1$, given any $\rho<\rho^{*}(p)$, there exist constants $c_{4}, c_{5}>0$ such that when $m \geq c_{4} n$ and n is large enough, with probability $1-e^{-c_{5} n}$, an $m \times n$ matrix A with i.i.d. $N(0,1)$ entries has the following property: for every $f \in \mathbf{R}^{n}$ and every error e with its support T satisfying $|T| \leq \rho m, f$ is the unique solution to the l_{p}-minimization problem (3).

Proof: Lemma 3 indicates that $\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}-$ $\sum_{i \in T}\left|(A z)_{i}\right|^{p} \geq \delta S\|z\|_{2}^{p}>0$ for every non-zero z, then from

Theorem $1, f$ is the unique solution to the l_{p}-minimization problem (3).

We remark here that ρ^{*} is a sharp bound for successful recovery. For any $\rho>\rho^{*}$, from Lemma 2, with overwhelming probability the sum of the largest $\lceil\rho m\rceil$ terms of $\left|(A z)_{i}\right|^{p}$'s is more than the half of the total sum S_{1}, then Theorem 1 indicates that the l_{p}-recovery fails in this case. In fact, for any vector $f^{\prime} \neq f$, let $z=f^{\prime}-f$, and let T be the support of the largest $\lceil\rho m\rceil$ terms of $\left|(A z)_{i}\right|^{p}$'s. If the error vector e agrees with $\left|(A z)_{i}\right|^{p}$ on the support T and is zero elsewhere, then with large probability $\|e-A z\|_{p}^{p}$ is no greater than that of $\|e\|_{p}^{p}$, which implies that l_{p}-minimization cannot correctly return f. Proposition 1 thus implies that the threshold strictly decreases as p increases. The performance of $l_{p_{1}}$-minimization is better than $l_{p_{2}}$-minimization for $p_{1}<p_{2} \leq 1$ in the sense that the sparsity requirement for the arbitrary error vector is less strict for smaller p.

III. Recovery From Error Vector With Fixed Support and Signs

In Section II, for some $\rho>0$, we call l_{p}-minimization successful if and only if it can recover f from any error e whose support size is at most ρm. Here we only require l_{p} minimization to recover f from errors with fixed but unknown support and signs. We will provide a sharp threshold ρ_{w}^{*} of the proportion of errors below which l_{p}-minimization is successful.

Once the support and the signs of an error vector is fixed, the condition of successful recovery with l_{1}-minimization from any such error vector is the same, however, the condition of successful recovery with l_{p}-minimization from different error vectors differs even the support and the signs of the error is fixed. Here we consider the worst case scenario in the sense that the recovery with l_{p}-minimization is defined to be "successful" if f can be recovered from any such error e. We characterize this case in Theorem 3. Note that if there is further constraint on e, then the condition of successful recovery with l_{p}-minimization may be different from the one stated in Theorem 3.

Theorem 3. Given any $p \in(0,1)$, for every $f \in \mathbf{R}^{n}$ and every error e with fixed support T and fixed sign for each entry $e_{i}, i \in T$, if f is always the unique solution to l_{p}-minimization problem (3), then

$$
\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p} \leq \sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}
$$

for all $z \in \mathbf{R}^{n}$ where $T^{-}=\left\{i \in T:(A z)_{i} e_{i}<0\right\}$.
Conversely, f is always the unique solution to l_{p} minimization problem (3) provided that

$$
\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}<\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}
$$

for all non-zero $z \in \mathbf{R}^{n}$.
Proof: First part. Suppose there exists z such that $\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}>\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}$, let $\delta=$ $\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}-\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}>0$.

Let $e_{i}=0$ for every i in T^{c}, let $e_{i}=-(A z)_{i}$ for every i in T^{-}. For every i in $T^{+}:=T-T^{-}$, let e_{i} satisfy $(A z)_{i} e_{i} \geq 0$. As $p \in(0,1)$, we can pick $e_{i}\left(i \in T^{+}\right)$with $\left|e_{i}\right|$ large enough such that $\sum_{i \in T^{+}}\left|e_{i}+(A z)_{i}\right|^{p}-\sum_{i \in T^{+}}\left|e_{i}\right|^{p}<\frac{\delta}{2}$. Then

$$
\begin{aligned}
\|e+A z\|_{p}^{p} & =\sum_{i \in T^{-}} 0+\sum_{i \in T^{+}}\left|e_{i}+(A z)_{i}\right|^{p}+\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p} \\
& <\sum_{i \in T^{+}}\left|e_{i}\right|^{p}+\frac{\delta}{2}+\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p} \\
& =\sum_{i \in T^{+}}\left|e_{i}\right|^{p}+\frac{\delta}{2}+\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}-\delta \\
& =\|e\|_{p}^{p}-\frac{\delta}{2} .
\end{aligned}
$$

Thus $\|y-A(f-z)\|_{p}^{p}=\|e+A z\|_{p}^{p}<\|e\|_{p}^{p}=\|y-A f\|_{p}^{p}, f$ is not a solution to (3), which is a contradiction.

Second part. For any e on support T with fixed signs and for any f, let $y=A f+e$. For any $x \neq f$, let $z=f-x$, and so

$$
\begin{aligned}
& \|y-A x\|_{p}^{p}=\|(y-A f)+A z\|_{p}^{p} \\
= & \sum_{i \in T^{+}}\left|e_{i}+(A z)_{i}\right|^{p}+\sum_{i \in T^{-}}\left|e_{i}+(A z)_{i}\right|^{p}+\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p} \\
\geq & \sum_{i \in T^{+}}\left|e_{i}\right|^{p}+\sum_{i \in T^{-}}\left(\left|e_{i}\right|^{p}-\left|(A z)_{i}\right|^{p}\right)+\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p} \\
> & \|e\|_{p}^{p} .
\end{aligned}
$$

The first inequality holds as for each i in $T^{+},(A z)_{i}$ has the same sign as that of e_{i} if not zero; and for $p \in(0,1), \mid e_{i}+$ $\left.(A z)_{i}\right|^{p} \geq\left|e_{i}\right|^{p}-\left|(A z)_{i}\right|^{p}$ holds. The second inequality comes from the assumption that $\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}<\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}$. Thus $\|y-A x\|_{p}^{p}>\|y-A f\|_{p}^{p}$ for all $x \neq f$.
Lemma 4. Let $X_{1}, X_{2}, \ldots, X_{m}$ be i.i.d. $N(0,1)$ random variables and T be a set of indices with size $|T|=\rho m$ for some $\rho>0$. Let $e \in \mathbf{R}^{m}$ be any vector on support T with fixed signs for each entry. If $\rho<\rho_{w}^{*}=\frac{2}{3}$, for every $\epsilon>0$, when m is large enough, with probability $1-e^{-c_{6} m}$ for some constant $c_{6}>0$, the following two properties hold:

- $\frac{1}{2} \rho m(\mu-\epsilon)<\sum_{i \in T: X_{i} e_{i}<0}\left|X_{i}\right|^{p}<\frac{1}{2} \rho m(\mu+\epsilon)$
- $(1-\rho) m(\mu-\epsilon)<\sum_{i \in T^{c}}\left|X_{i}\right|^{p}<(1-\rho) m(\mu+\epsilon)$.
where $\mu=E\left[|X|^{p}\right], X \sim N(0,1)$.
Proof: Define a random variable s_{i} for each i in T that is equal to 1 if $X_{i} e_{i}<0$ and equal to 0 otherwise. Then $\sum_{i \in T: X_{i} e_{i}<0}\left|X_{i}\right|^{p}=\sum_{i \in T}\left|X_{i}\right|^{p} s_{i} . E\left[\left|X_{i}\right|^{p} s_{i}\right]=\frac{1}{2} \mu$ for every i in T as $X_{i} \sim N(0,1)$. From Chernoff bound, for any $\epsilon>0$, there exist $d_{1}>0$ and $d_{2}>0$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{i \in T}\left|X_{i}\right|^{p} s_{i} \leq \frac{1}{2} \rho m(\mu-\epsilon)\right] \leq e^{-d_{1} m}, \\
& \operatorname{Pr}\left[\sum_{i \in T}\left|X_{i}\right|^{p} s_{i} \geq \frac{1}{2} \rho m(\mu+\epsilon)\right] \leq e^{-d_{2} m}
\end{aligned}
$$

Again from Chernoff bound, there exist some constants $d_{3}>$ $0, d_{4}>0$ such that

$$
\begin{aligned}
& \operatorname{Pr}\left[\sum_{i \in T^{c}}\left|X_{i}\right|^{p} \leq(1-\rho) m(\mu-\epsilon)\right] \leq e^{-d_{3} m} \\
& \operatorname{Pr}\left[\sum_{i \in T^{c}}\left|X_{i}\right|^{p} \geq(1-\rho) m(\mu+\epsilon)\right] \leq e^{-d_{4} m}
\end{aligned}
$$

By union bound, there exists some constant $c_{6}>0$ such that the two properties stated in the lemma hold with probability at least $1-e^{-c_{6} m}$.

Lemma 4 implies that $\sum_{i \in T: X_{i} e_{i}<0}\left|X_{i}\right|^{p}<\sum_{i \in T^{c}}\left|X_{i}\right|^{p}$ holds with large probability when $|T|=\rho m<\frac{2}{3} m$. Applying the similar net argument in Section II, we can extend the result to every vector $A z$ where matrix $A^{m \times n}$ has i.i.d. Gaussian entries and z is any vector in \mathbf{R}^{n}. Then we can establish the main result regarding the threshold of successful recovery with l_{p}-minimization from errors with fixed support and signs.
Theorem 4. For any $p \in(0,1)$, given any $\rho<\frac{2}{3}$, there exist constants $c_{7}, c_{8}>0$ such that when $m \geq c_{7} n$ and n is large enough, with probability $1-e^{-c_{8} n}$, an $m \times n$ matrix A with i.i.d. $N(0,1)$ entries has the following property: for every $f \in \mathbf{R}^{n}$ and every error e with fixed support T satisfying $|T| \leq \rho m$ and fixed signs on T, f is the unique solution to the l_{p}-minimization problem (3).

Proof: From lemma 4, applying similar arguments in the proof of lemma 3, we get that when $m \geq c_{7} n$ and n is large enough, with probability $1-e^{-c_{8} n}$ for some $c_{8}>0$,

- $\frac{1}{2} \rho m(\mu-\epsilon)<\sum_{i \in T:(A v)_{i} e_{i}<0}\left|(A v)_{i}\right|^{p}<\frac{1}{2} \rho m(\mu+\epsilon)$
- $(1-\rho) m(\mu-\epsilon)<\sum_{i \in T^{c}}\left|(A v)_{i}\right|^{p}<(1-\rho) m(\mu+\epsilon)$ hold for all the vectors v in a γ-net K at the same time. Moreover, for any $z \in \mathbf{R}^{n}$, we have $z=\|z\|_{2} \sum_{j \geq 0} \gamma_{j} v_{j}$, where $\gamma_{0}=1, v_{j} \in K$ for all j and $\gamma_{j} \leq \gamma^{j}$.

Let $T^{-}=\left\{i \in T:(A z)_{i} e_{i}<0\right\}$. For any i in T^{-},

$$
\begin{aligned}
\left|(A z)_{i}\right|^{p} & =\|z\|_{2}^{p}\left|\left(\sum_{j \geq 0} \gamma_{j} A v_{j}\right)_{i}\right|^{p} \\
& \leq\|z\|_{2}^{p}\left|\left(\sum_{j:\left(A v_{j}\right)_{i} e_{i}<0} \gamma_{j} A v_{j}\right)_{i}\right|^{p} \\
& \leq\|z\|_{2}^{p} \sum_{j:\left(A v_{j}\right)_{i} e_{i}<0} \gamma^{j p}\left|\left(A v_{j}\right)_{i}\right|^{p}
\end{aligned}
$$

where the first inequality holds as $(A z)_{i} e_{i}<0$. Then

$$
\begin{aligned}
& \sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p} \leq\|z\|_{2}^{p} \sum_{i \in T^{-}} \sum_{j:\left(A v_{j}\right)_{i} e_{i}<0} \gamma^{j p}\left|\left(A v_{j}\right)_{i}\right|^{p} \\
& \leq\|z\|_{2}^{p} \sum_{i \in T} \sum_{j:\left(A v_{j}\right)_{i} e_{i}<0} \gamma^{j p}\left|\left(A v_{j}\right)_{i}\right|^{p} \\
&=\|z\|_{2}^{p} \sum_{j \geq 0} \gamma^{j p} \sum_{i \in T:\left(A v_{j}\right)_{i} e_{i}<0}\left|\left(A v_{j}\right)_{i}\right|^{p} \\
&<\|z\|_{2}^{p} \frac{1}{2\left(1-\gamma^{p}\right)} \rho m(\mu+\epsilon) \\
& \geq\left.\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}=\|z\|_{2}^{p} \sum_{i \in T^{c}}^{p}\left|\left(\sum_{j \geq 0} \gamma_{j} A v_{j}\right)_{i}\right|^{p}\left|\left(A v_{0}\right)_{i}\right|^{p}-\sum_{j \geq 1} \gamma^{j p} \sum_{i \in T^{c}}\left|\left(A v_{j}\right)_{i}\right|^{p}\right) \\
&>\|z\|_{2}^{p}\left((1-\rho) m(\mu-\epsilon)-\sum_{j \geq 1} \gamma^{j p}(1-\rho) m(\mu+\epsilon)\right) \\
& \geq\|z\|_{2}^{p}(1-\rho) m \frac{\mu-2 \mu \gamma^{p}-\epsilon}{1-\gamma^{p}}
\end{aligned}
$$

Thus $\sum_{i \in T^{c}}\left|(A z)_{i}\right|^{p}-\sum_{i \in T^{-}}\left|(A z)_{i}\right|^{p}>\|z\|_{2}^{p} \frac{m \mu}{1-\gamma^{p}}(1-$ $\left.\frac{3}{2} \rho-2 \gamma^{p}(1-\rho)-\frac{\epsilon}{\mu}\left(1-\frac{\rho}{2}\right)\right)$. For any $\rho<\frac{2}{3}$, we can pick γ and ϵ small enough such that the righthand side is positive. The result follows by applying Theorem 3.

We remark here that ρ_{w}^{*} is a sharp bound for successful recovery in this setup. For any $\rho>\rho_{w}^{*}$, from Lemma 4, with overwhelming probability that $\sum_{i \in T: X_{i} e_{i}<0}\left|X_{i}\right|^{p}>$ $\sum_{i \in T^{c}}\left|X_{i}\right|^{p}$, then Theorem 3 indicates that the l_{p}-recovery fails for some error vector e in this case.

Surprisingly, the successful recovery threshold ρ^{*} when fixing the support and the signs of an error vector is $\frac{2}{3}$ for all p in $(0,1)$ and is strictly less than the threshold for $p=1$, which is 1 ([14]). Thus in this case, l_{1}-minimization has better recovery performance than that of l_{p}-minimization $(p<1)$ in terms of the sparsity requirement for the error vector. The result seems counterintuitive, however, it largely depends on the definition of successful recovery in terms of worse case performance. The condition of successful recovery via l_{1} minimization from any error vector on the fixed support with fixed signs is the same, while the condition of l_{p}-minimization from different error vectors differs.

Acknowledgments: The authors thank anonymous reviewers for helpful comments. The research is supported by NSF under CCF-0835706.

REFERENCES

[1] D. L. Donoho and J. Tanner, "Sparse nonnegative solution of underdetermined linear equations by linear programming," in Proc. Natl. Acad. Sci. U.S.A., vol. 102, no. 27, 2005, pp. 9446-9451.
[2] D. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, April 2006.
[3] E. Candès and T. Tao, "Decoding by linear programming," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
[4] ——, "Near-optimal signal recovery from random projections: Universal encoding strategies?" IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 54065425, Dec. 2006.
[5] M. Stojnic, W. Xu, and B. Hassibi, "Compressed sensing - probabilistic analysis of a null-space characterization," in Proc. ICASSP, 2008, pp. 3377-3380.
[6] J. Wright and Y. Ma, "Dense error correction via l^{1} minimization," Preprint, 2008.
[7] R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," Signal Process.Lett., vol. 14, no. 10, pp. 707-710, 2007.
[8] - , "Nonconvex compressed sensing and error correction," in Proc. ICASSP, 2007.
[9] R. Saab, R. Chartrand, and O. Yilmaz, "Stable sparse approximations via nonconvex optimization," in Proc. ICASSP, 2008.
[10] M. E. Davies and R. Gribonval, "Restricted isometry constants where l_{p} sparse recovery can fail for $0<p \leq 1$," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2203-2214, 2009.
[11] S. Foucart and M.-J. Lai, "Sparsest solutions of underdetermined linear systems via l_{q}-minimization for $0<q \leq 1$," Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 395-407, 2009.
[12] C. Dwork, F. McSherry, and K. Talwar, "The price of privacy and the limits of lp decoding," in Proc. STOC, 2007, pp. 85-94.
[13] M. Ledoux, Ed., The Concentration of Measure Phenomenon. American Mathematical Society.
[14] D. Donoho, "High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension," Discrete Comput. Geom., 2006.

