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Abstract—An unknown vector f in R
n can be recovered from

corrupted measurements y = Af + e where Am×n(m ≥ n)
is the coding matrix if the unknown error vector e is sparse.
We investigate the relationship of the fraction of errors and the
recovering ability of lp-minimization (0 < p ≤ 1) which returns
a vector x minimizing the “ lp-norm” of y − Ax. We give sharp
thresholds of the fraction of errors that determine the successful
recovery of f . If e is an arbitrary unknown vector, the threshold
strictly decreases from 0.5 to 0.239 asp increases from 0 to 1. Ife
has fixed support and fixed signs on the support, the thresholdis
2

3
for all p in (0, 1), while the threshold is 1 for l1-minimization.

I. I NTRODUCTION

We consider recovering a vectorf in R
n from corrupted

measurementsy = Af+e, whereAm×n(m ≥ n) is the coding
matrix ande is an arbitrary and unknown vector of errors.
Obviously, if the fraction of the corrupted entries is too large,
there is no hope of recoveringf from Af +e. However, if the
fraction of corrupted measurements is small enough, one can
actually recoverf from y = Af + e. As the sparsity ofe is
represented by thel0 norm,‖e‖0 := |{i : ei 6= 0}|, one natural
way is to find a vectorx such that the number of terms where
y and Ax differ is minimized. Mathematically, we solve the
following l0-minimization problem:

min
x∈Rn

‖y − Ax‖0. (1)

However, (1) is combinatorial and computationally intractable,
and one commonly used approach is to solve a closely related
l1-minimization problem:

min
x∈Rn

‖y − Ax‖1 (2)

where‖x‖1 :=
∑

i |xi|. (2) can be recast as a linear program,
thus can be solved efficiently. Conditions under which (2) can
successfully recoverf have been extensively studied in the
literature of compressed sensing ([1]–[6]). For example, [3]
gives a sufficient condition known as the Restricted Isometry
Property (RIP).

Recently, there has been great research interest in recovering
f by lp-minimization forp < 1 ([7]–[11]) as follows,

min
x∈Rn

‖y − Ax‖p
p. (3)

Recall that‖x‖p
p := (

∑

i |xi|p) for p > 0. We sayf can be
recovered bylp-minimization if and only if it is the unique
solution to (3). Then the question is what is the relationship
between the sparsity of the error vector and the successful
recovery withlp-minimization? (3) is non-convex, and thus it
is generally hard to compute the global minimum. However,

[7] shows numerically that we can recoverf by finding a
local minimum of (3), andlp-minimization outperformsl1-
minimization in terms of the sparsity restriction fore. [9]
extends RIP tolp-minimization and analyzes the ability of
lp-minimization to recover signals from noisy measurements.
[11] also provides a condition for the success recovery via
lp-minimization, which can be generalized toL1 case. Both
conditions are sufficient but not necessary, and thus are too
restrictive in general.

Let e ∈ R
m be an arbitrary and unknown vector of errors

on supportT = {i : ei 6= 0}. We saye is ρm-sparse if
|T | ≤ ρm for someρ < 1 where |T | is the cardinality of
set T . Our main contribution is a sharp thresholdρ∗(p) for
all p ≤ 1 such that forρ < ρ∗(p), if m ≥ Cn for some
constantC and the entries ofA are i.i.d. Gaussian, thenlp-
minimization can recoverf with overwhelming probability.
We provide two thresholds: one (ρ∗) is for the case whene
is an arbitrary unknown vector, and the other (ρ∗w) assumes
that e has fixed support and fixed signs. In the latter case, the
condition of successful recovery withl1-minimization from
any possible error vector is the same, while the condition
of successful recovery withlp-minimization (p < 1) from
different error vectors differs. Using worst-case performance
as criterion, we prove that thoughlp outperformsl1 in the
former case, it is not comparable tol1 in the latter case. Both
boundsρ∗ andρ∗w are tight in the sense that once the fraction
of errors exceedsρ∗ (or ρ∗w), lp-minimization can be made to
fail with overwhelming probability. Our technique stems from
[12], which only focuses onl1-minimization and the case that
e is arbitrary.

II. RECOVERY FROM ARBITRARY ERROR VECTOR

In this section, we shall give a functionρ∗(p) such that
for a given p, for any ρ < ρ∗(p), when the entries ofA
are i.i.d. Gaussian, thelp-minimization can recoverf with
overwhelming probability as long as the errore is ρm-sparse.

The following theorem gives an equivalent condition for the
success oflp minimization ( [7], [8]).

Theorem 1 ( [7], [8]) . f is the unique solution tolp min-
imization problem(0 < p ≤ 1) for every f and for every
ρm-sparsee if and only if

∑

i∈T

|(Az)i|p <
∑

i∈T c

|(Az)i|p (4)

for everyz ∈ R
n, and every supportT with |T | ≤ ρm.

One important property is that if the condition (4) is satisfied
for some0 < p ≤ 1, then it is also satisfied for all0 < q ≤ p



([10]). Now we define the threshold of successful recoveryρ∗

as a function ofp.

Lemma 1. Let X1, X2,...,Xm be i.i.d N(0, 1) random vari-
ables and letY1, Y2,...,Ym be the sorted ordering (in non-
increasing order) of|X1|p, |X2|p,...,|Xm|p for somep ∈ (0, 1].

For a ρ > 0, defineSρ as
⌈ρm⌉
∑

i=1

Yi. Let S denoteE[S1], the

expected value ofS1. Then there exists a constantρ∗(p) such
that lim

m→∞

E[Sρ∗ ]

S = 1
2 .

Proof: Let X ∼ N(0, 1) and let Z = |X |. Let f(z)
denote the p.d.f. ofZ and F (z) be its c.d.f. Defineg(t) =
∫∞

t zpf(z)dz. g is continuous and decreasing in[0,∞], and
g(0) = E[Zp] = S

m , limt→∞ g(t) = 0. Then there existsz∗

such thatg(z∗) = g(0)
2 , we claim thatρ∗ = 1−F (z∗) has the

desired property.
Let Tt =

∑

i:Yi≥tp Yi. Then E[Tz∗ ] = mg(z∗). Since
E[|Tz∗ − Sρ∗ |] is bounded byO(

√
m), andS = mg(0), thus

limm→∞
E[Sρ∗ ]

S = 1
2 .

Proposition 1. The functionρ∗(p) is strictly decreasing inp
on (0, 1].

Proof: From the definition ofz∗ andρ∗(p), we have

H(z∗, p) :=

∫ z∗

0

xpf(x)dx −
∫ ∞

z∗

xpf(x)dx = 0, (5)

and
ρ∗ = 1 − F (z∗),

where f(·) and F (·) are the p.d.f. and c.d.f. of|X |, X ∼

N(0, 1).
From the Implicit Function Theorem,

dz∗

dp
= −

∂H
∂p

∂H
∂z∗

= −
∫ z∗

0 xp(lnx)f(x)dx −
∫∞

z∗
xp(lnx)f(x)dx

2z∗pf(z∗)

From the chain rule, we knowdρ∗

dp = dρ∗

dz∗

dz∗

dp , thus

dρ∗

dp
=

∫ z∗

0
xp(ln x)f(x)dx −

∫∞

z∗
xp(lnx)f(x)dx

2z∗p
(6)

Note the numerator of (6) is less than 0 from (5), thusdρ∗

dp <
0.

We plotρ∗ againstp numerically in Fig. 1.ρ∗(p) goes to1
2

asp tends to zero. Note thatρ∗(1) = 0.239..., which coincides
with the result in [12].

Now we proceed to prove thatρ∗ is the threshold of
successful recovery withlp minimization forp in (0, 1]. First
we state the concentration property ofSρ in the following
lemma.

Lemma 2. For any p ∈ (0, 1], let X1,...,Xm, Y1,...,Ym, Sρ

andS be as above. For anyρ > 0 and anyδ > 0, there exists
a constantc1 > 0 such that whenm is large enough, with
probability at least1 − 2e−c1m, |Sρ − E[Sρ]| ≤ δS.

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

p

ρ*

Fig. 1. Thresholdρ∗ of successful recovery withlp-minimization

Proof: Let X = [X1, ..., Xm]T . If two vectorsX and
X ′ only differ in co-ordinatei, then for anyp, |Sρ(X) −
Sρ(X

′)| ≤ ||Xi|p − |X ′
i|p|. Thus for anyX andX ′,

|Sρ(X)−Sρ(X
′)| ≤

∑

i:Xi 6=X′

i

∣

∣|Xi|p−|X ′
i|p
∣

∣ =
∑

i

∣

∣|Xi|p−|X ′
i|p
∣

∣.

Since
∣

∣|Xi|p − |X ′
i|p
∣

∣ ≤ |Xi − X ′
i|p for all p ∈ (0, 1],

|Sρ(X) − Sρ(X
′)| ≤

∑

i

|Xi − X ′
i|p. (7)

From the isoperimetric inequality for the Gaussian measure
([13]), for any setA with measure at least a half, the set
At = {x ∈ R

m : d(x, A) ≤ t} has measure at least1−e−t2/2,
whered(x, A) = infy∈A ‖x−y‖2. Let Mρ be the median value
of Sρ = Sρ(X). Define setA = {x ∈ R

m : Sρ(x) ≤ Mρ},
then

Pr[d(x, A) ≤ t] ≥ 1 − e−t2/2.

We claim thatd(x, A) ≤ t implies that Sρ(x) ≤ Mρ +
m(1−p/2)tp. If x ∈ A, then Sρ(x) ≤ Mρ, thus the claim
holds asm1−p/2tp is non-negative. Ifx /∈ A, then there exists
x′ ∈ A such that‖x − x′‖2 ≤ t. Let ui = 1 for all i and let
vi = |xi − x′

i|p. From Hölder’s inequality

∑

i

|xi − x′
i|p ≤

(

∑

i

|ui|2/(2−p)

)1−p/2(
∑

i

|vi|2/p

)p/2

≤ m(1−p/2)(t2)p/2 = m(1−p/2)tp (8)

From (7) and (8),|Sρ(x) − Sρ(x
′)| ≤ m(1−p/2)tp. Since

x /∈ A andx′ ∈ A, thenSρ(x) > Mρ ≥ Sρ(x
′). ThusSρ(x) ≤

Mρ + m(1−p/2)tp, which verifies our claim. Then

Pr[Sρ(x) ≤ Mρ+m(1−p/2)tp] ≥ Pr[d(x, A) ≤ t] ≥ 1−e−t2/2.
(9)

Similarly,

Pr[Sρ(x) ≥ Mρ − m(1−p/2)tp] ≥ 1 − e−t2/2. (10)

Combining (9) and (10),

Pr[|Sρ(x) − Mρ| ≥ m(1−p/2)tp] ≤ 2e−t2/2. (11)



The difference ofE[Sρ] andMρ can be bounded as follows,

|E[Sρ] − Mρ| ≤ E[|Sρ − Mρ|]

=

∫ ∞

0

Pr[|Sρ(x) − Mρ| ≥ y]dy

≤
∫ ∞

0

2e−
1
2y

2
p m

(1− 2
p

)

dy

= m(1− p
2 )

∫ ∞

0

2e−
1
2 s

2
p
ds

Note thatc :=
∫∞

0
2e−

1
2 s(2/p)

ds is a finite constant for all
p ∈ (0, 1]. As p > 0 andS = mE[|xi|p], thus for anyδ > 0,
cm(1− p

2 ) < δ
2S whenm is large enough.

Let t =
(

1
2δSm( p

2−1)
)

1
p = (1

2δE[|xi|p])
1
p
√

m, from (11)

with probability at least (1−2e−
1
2 ( 1

2 δE[|xi|
p])

2
p m), |Sρ−Mρ| <

1
2δS. Thus |Sρ − E[Sρ]| ≤ |Sρ − Mρ| + |Mρ − E[Sρ]| < δS
with probability at least1− 2e−c1m for some constantc1.

Corollary 1. For any ρ < ρ∗, there exists aδ > 0 and a
constantc2 > 0 such that whenm is large enough, with
probability 1 − 2e−c2m, Sρ ≤ (1

2 − δ)S.

Proof: Whenρ < ρ∗,

E[Sρ] = E[Sρ∗ ] −
⌈ρ∗m⌉
∑

i=⌈ρm⌉+1

E[|Xi|p]

≤ E[Sρ∗ ] − (⌈ρ∗m⌉ − ⌈ρm⌉)E[|Xi|p]
ThenE[Sρ]/S ≤ 1

2 − 2δ for a suitableδ asS = mE[|Xi|p].
The result follows by combining the above with Lemma 2.

Corollary 2. For any ǫ > 0, there exists a constantc3 > 0
such that whenm is large enough, with probability1−2e−c3m,
it holds that(1 − ǫ)S ≤ S1 ≤ (1 + ǫ)S.

The above two corollaries indicate that with overwhelming
probability the sum of the largest⌈ρm⌉ terms ofYi’s is less
than half of the total sumS1 if ρ < ρ∗. The following lemma
extends the result to every vectorAz where matrixAm×n has
i.i.d. Gaussian entries andz is any vector inRn.

Lemma 3. For any 0 < p ≤ 1, given anyρ < ρ∗(p), there
exist constantsc4, c5, δ > 0 such that whenm ≥ c4n and n
is large enough, with probability1− e−c5n, an m× n matrix
A with i.i.d. N(0, 1) entries has the following property: for
everyz ∈ R

n and every subsetT ⊆ {1, ..., m} with |T | ≤ ρm,
∑

i∈T c

|(Az)i|p − ∑

i∈T

|(Az)i|p ≥ δS‖z‖p
2.

Proof: For any givenγ > 0, there exists aγ-net K of
cardinality less than(1 + 2

γ )n([13]). A γ-net K is a set of
points such that‖vk‖2 = 1 for all vk in K and for anyz with
‖z‖2 = 1, there exists somevk such that‖z − vk‖2 ≤ γ.

Since A has i.i.d N(0, 1) entries, thenAvk has m i.i.d.
N(0, 1) entries. Applying a union bound to Corollary 1 and
2, we know that for someδ > 0 and for everyǫ > 0, with
probability1 − 2e−cm for somec > 0, we have

Sρ(Avk) ≤ (
1

2
− δ)S (12)

and
(1 − ǫ)S ≤ S1(Avk) ≤ (1 + ǫ)S (13)

hold for a vectorvk in K. Takingm = c4n for large enough
c4, from union bound we get that (12) and (13) hold for all the
points inK at the same time with probability at least1−e−c5n

for somec5 > 0.
For anyz such that‖z‖2 = 1, there existsv0 in K such that

‖z−v0‖2 , γ1 ≤ γ. Let z1 denotez−v0, then‖z1−γ1v1‖2 ,

γ2 ≤ γ1γ ≤ γ2 for somev1 in K. Repeating this process, we
have

z =
∑

j≥0

γjvj

whereγ0 = 1, γj ≤ γj andvj ∈ K.
Thus for anyz ∈ R

n, we havez = ‖z‖2

∑

j≥0 γjvj .
For any index setT with |T | ≤ ρm,

∑

i∈T

|(Az)i|p = ‖z‖p
2

∑

i∈T

|(
∑

j≥0

γjAvj)i|p

≤ ‖z‖p
2

∑

i∈T

∑

j≥0

γjp|(Avj)i|p

= ‖z‖p
2

∑

j≥0

γjp
∑

i∈T

|(Avj)i|p

≤ S‖z‖p
2

1 − 2δ

2(1 − γp)

∑

i

|(Az)i|p = ‖z‖p
2

∑

i

|(
∑

j≥0

γjAvj)i|p

≥ ‖z‖p
2

∑

i

(|(Av0)i|p −
∑

j≥1

γp
j |(Avj)i|p)

≥ ‖z‖p
2(
∑

i

|(Av0)i|p −
∑

j≥1

γjp
∑

i

|(Avj)i|p)

≥ ‖z‖p
2((1 − ǫ)S −

∑

j≥1

γjp(1 + ǫ)S)

≥ S‖z‖p
2

1 − 2γp − ǫ

1 − γp

Thus
∑

i∈T c

|(Az)i|p −
∑

i∈T

|(Az)i|p ≥ S‖z‖p
2

2δ−2γp−ǫ
1−γp . For

a given δ, we can pickγ and ǫ small enough such that
∑

i∈T c

|(Az)i|p − ∑

i∈T

|(Az)i|p ≥ δS‖z‖p
2.

We can now establish one main result regarding the thresh-
old of successful recovery withlp-minimization.

Theorem 2. For any 0 < p ≤ 1, given anyρ < ρ∗(p), there
exist constantsc4, c5 > 0 such that whenm ≥ c4n and n is
large enough, with probability1 − e−c5n, an m × n matrix
A with i.i.d. N(0, 1) entries has the following property: for
everyf ∈ R

n and every errore with its supportT satisfying
|T | ≤ ρm, f is the unique solution to thelp-minimization
problem (3).

Proof: Lemma 3 indicates that
∑

i∈T c |(Az)i|p −
∑

i∈T |(Az)i|p ≥ δS‖z‖p
2 > 0 for every non-zeroz, then from



Theorem 1,f is the unique solution to thelp-minimization
problem (3).

We remark here thatρ∗ is a sharp bound for successful
recovery. For anyρ > ρ∗, from Lemma 2, with overwhelming
probability the sum of the largest⌈ρm⌉ terms of |(Az)i|p’s
is more than the half of the total sumS1, then Theorem 1
indicates that thelp-recovery fails in this case. In fact, for
any vectorf ′ 6= f , let z = f ′ − f , and letT be the support
of the largest⌈ρm⌉ terms of |(Az)i|p’s. If the error vectore
agrees with|(Az)i|p on the supportT and is zero elsewhere,
then with large probability‖e − Az‖p

p is no greater than that
of ‖e‖p

p, which implies thatlp-minimization cannot correctly
returnf . Proposition 1 thus implies that the threshold strictly
decreases asp increases. The performance oflp1 -minimization
is better thanlp2-minimization forp1 < p2 ≤ 1 in the sense
that the sparsity requirement for the arbitrary error vector is
less strict for smallerp.

III. R ECOVERY FROM ERROR VECTORWITH FIXED

SUPPORT ANDSIGNS

In Section II, for someρ > 0, we call lp-minimization
successful if and only if it can recoverf from any errore
whose support size is at mostρm. Here we only requirelp-
minimization to recoverf from errors with fixed but unknown
support and signs. We will provide a sharp thresholdρ∗w
of the proportion of errors below whichlp-minimization is
successful.

Once the support and the signs of an error vector is fixed,
the condition of successful recovery withl1-minimization from
any such error vector is the same, however, the condition of
successful recovery withlp-minimization from different error
vectors differs even the support and the signs of the error
is fixed. Here we consider the worst case scenario in the
sense that the recovery withlp-minimization is defined to be
“successful” if f can be recovered from any such errore.
We characterize this case in Theorem 3. Note that if there
is further constraint one, then the condition of successful
recovery withlp-minimization may be different from the one
stated in Theorem 3.

Theorem 3. Given anyp ∈ (0, 1), for everyf ∈ R
n and

every errore with fixed supportT and fixed sign for each entry
ei, i ∈ T , if f is always the unique solution tolp-minimization
problem (3), then

∑

i∈T−

|(Az)i|p ≤
∑

i∈T c

|(Az)i|p

for all z ∈ R
n whereT− = {i ∈ T : (Az)iei < 0}.

Conversely, f is always the unique solution tolp-
minimization problem (3) provided that

∑

i∈T−

|(Az)i|p <
∑

i∈T c

|(Az)i|p

for all non-zeroz ∈ R
n.

Proof: First part. Suppose there existsz such
that

∑

i∈T− |(Az)i|p >
∑

i∈T c |(Az)i|p, let δ =
∑

i∈T− |(Az)i|p −∑i∈T c |(Az)i|p > 0.

Let ei = 0 for everyi in T c, let ei = −(Az)i for everyi in
T−. For everyi in T + := T −T−, let ei satisfy(Az)iei ≥ 0.
As p ∈ (0, 1), we can pickei (i ∈ T +) with |ei| large enough
such that

∑

i∈T+ |ei + (Az)i|p −
∑

i∈T+ |ei|p < δ
2 . Then

‖e + Az‖p
p =

∑

i∈T−

0 +
∑

i∈T+

|ei + (Az)i|p +
∑

i∈T c

|(Az)i|p

<
∑

i∈T+

|ei|p +
δ

2
+
∑

i∈T c

|(Az)i|p

=
∑

i∈T+

|ei|p +
δ

2
+
∑

i∈T−

|(Az)i|p − δ

= ‖e‖p
p −

δ

2
.

Thus‖y −A(f − z)‖p
p = ‖e + Az‖p

p < ‖e‖p
p = ‖y −Af‖p

p, f
is not a solution to (3), which is a contradiction.

Second part. For anye on supportT with fixed signs and
for any f , let y = Af + e. For anyx 6= f , let z = f − x, and
so

‖y − Ax‖p
p = ‖(y − Af) + Az‖p

p

=
∑

i∈T+

|ei + (Az)i|p +
∑

i∈T−

|ei + (Az)i|p +
∑

i∈T c

|(Az)i|p

≥
∑

i∈T+

|ei|p +
∑

i∈T−

(|ei|p − |(Az)i|p) +
∑

i∈T c

|(Az)i|p

> ‖e‖p
p.

The first inequality holds as for eachi in T +, (Az)i has the
same sign as that ofei if not zero; and forp ∈ (0, 1), |ei +
(Az)i|p ≥ |ei|p−|(Az)i|p holds. The second inequality comes
from the assumption that

∑

i∈T−

|(Az)i|p <
∑

i∈T c

|(Az)i|p. Thus

‖y − Ax‖p
p>‖y − Af‖p

p for all x 6= f .

Lemma 4. Let X1, X2,...,Xm be i.i.d.N(0, 1) random vari-
ables andT be a set of indices with size|T | = ρm for some
ρ > 0. Let e ∈ R

m be any vector on supportT with fixed
signs for each entry. Ifρ < ρ∗w = 2

3 , for everyǫ > 0, whenm
is large enough, with probability1−e−c6m for some constant
c6 > 0, the following two properties hold:

•
1
2ρm(µ − ǫ) <

∑

i∈T :Xiei<0 |Xi|p < 1
2ρm(µ + ǫ)

• (1 − ρ)m(µ − ǫ) <
∑

i∈T c |Xi|p < (1 − ρ)m(µ + ǫ).

whereµ = E[|X |p], X ∼ N(0, 1).

Proof: Define a random variablesi for eachi in T that
is equal to 1 ifXiei < 0 and equal to 0 otherwise. Then
∑

i∈T :Xiei<0 |Xi|p =
∑

i∈T |Xi|psi. E[|Xi|psi] = 1
2µ for

every i in T as Xi ∼ N(0, 1). From Chernoff bound, for
any ǫ > 0, there existd1 > 0 andd2 > 0 such that

Pr[
∑

i∈T |Xi|psi ≤ 1
2ρm(µ − ǫ)] ≤ e−d1m,

Pr[
∑

i∈T |Xi|psi ≥ 1
2ρm(µ + ǫ)] ≤ e−d2m.

Again from Chernoff bound, there exist some constantsd3 >
0, d4 > 0 such that

Pr[
∑

i∈T c |Xi|p ≤ (1 − ρ)m(µ − ǫ)] ≤ e−d3m,
P r[
∑

i∈T c |Xi|p ≥ (1 − ρ)m(µ + ǫ)] ≤ e−d4m.



By union bound, there exists some constantc6 > 0 such that
the two properties stated in the lemma hold with probability
at least1 − e−c6m.

Lemma 4 implies that
∑

i∈T :Xiei<0 |Xi|p <
∑

i∈T c |Xi|p
holds with large probability when|T | = ρm < 2

3m. Applying
the similar net argument in Section II, we can extend the result
to every vectorAz where matrixAm×n has i.i.d. Gaussian
entries andz is any vector inRn. Then we can establish the
main result regarding the threshold of successful recoverywith
lp-minimization from errors with fixed support and signs.

Theorem 4. For any p ∈ (0, 1), given anyρ < 2
3 , there

exist constantsc7, c8 > 0 such that whenm ≥ c7n and n is
large enough, with probability1 − e−c8n, an m × n matrix
A with i.i.d. N(0, 1) entries has the following property: for
everyf ∈ R

n and every errore with fixed supportT satisfying
|T | ≤ ρm and fixed signs onT , f is the unique solution to
the lp-minimization problem (3).

Proof: From lemma 4, applying similar arguments in the
proof of lemma 3, we get that whenm ≥ c7n andn is large
enough, with probability1 − e−c8n for somec8 > 0,

•
1
2ρm(µ − ǫ) <

∑

i∈T :(Av)iei<0 |(Av)i|p < 1
2ρm(µ + ǫ)

• (1 − ρ)m(µ − ǫ) <
∑

i∈T c |(Av)i|p < (1 − ρ)m(µ + ǫ)

hold for all the vectorsv in a γ-net K at the same time.
Moreover, for anyz ∈ R

n, we havez = ‖z‖2

∑

j≥0 γjvj ,
whereγ0 = 1, vj ∈ K for all j andγj ≤ γj.

Let T− = {i ∈ T : (Az)iei < 0}. For anyi in T−,

|(Az)i|p = ‖z‖p
2

∣

∣(
∑

j≥0

γjAvj)i

∣

∣

p

≤ ‖z‖p
2

∣

∣(
∑

j:(Avj)iei<0

γjAvj)i

∣

∣

p

≤ ‖z‖p
2

∑

j:(Avj)iei<0

γjp|(Avj)i|p

where the first inequality holds as(Az)iei < 0. Then
∑

i∈T−

|(Az)i|p ≤ ‖z‖p
2

∑

i∈T−

∑

j:(Avj)iei<0

γjp|(Avj)i|p

≤ ‖z‖p
2

∑

i∈T

∑

j:(Avj)iei<0

γjp|(Avj)i|p

= ‖z‖p
2

∑

j≥0

γjp
∑

i∈T :(Avj)iei<0

|(Avj)i|p

< ‖z‖p
2

1

2(1 − γp)
ρm(µ + ǫ)

∑

i∈T c

|(Az)i|p = ‖z‖p
2

∑

i∈T c

|(
∑

j≥0

γjAvj)i|p

≥ ‖z‖p
2

(

∑

i∈T c

|(Av0)i|p −
∑

j≥1

γjp
∑

i∈T c

|(Avj)i|p
)

> ‖z‖p
2

(

(1 − ρ)m(µ − ǫ) −
∑

j≥1

γjp(1 − ρ)m(µ + ǫ)
)

≥ ‖z‖p
2(1 − ρ)m

µ − 2µγp − ǫ

1 − γp

Thus
∑

i∈T c |(Az)i|p −
∑

i∈T− |(Az)i|p > ‖z‖p
2

mµ
1−γp

(

1 −
3
2ρ − 2γp(1 − ρ) − ǫ

µ (1 − ρ
2 )
)

. For anyρ < 2
3 , we can pick

γ andǫ small enough such that the righthand side is positive.
The result follows by applying Theorem 3.

We remark here thatρ∗w is a sharp bound for successful
recovery in this setup. For anyρ > ρ∗w, from Lemma 4,
with overwhelming probability that

∑

i∈T :Xiei<0 |Xi|p >
∑

i∈T c |Xi|p, then Theorem 3 indicates that thelp-recovery
fails for some error vectore in this case.

Surprisingly, the successful recovery thresholdρ∗ when
fixing the support and the signs of an error vector is2

3 for
all p in (0, 1) and is strictly less than the threshold forp = 1,
which is 1 ([14]). Thus in this case,l1-minimization has better
recovery performance than that oflp-minimization (p < 1) in
terms of the sparsity requirement for the error vector. The
result seems counterintuitive, however, it largely depends on
the definition of successful recovery in terms of worse case
performance. The condition of successful recovery vial1-
minimization from any error vector on the fixed support with
fixed signs is the same, while the condition oflp-minimization
from different error vectors differs.
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