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Abstract— Frequency control rebalances supply and demand
while maintaining the network state within operational margins.
It is implemented using fast ramping reserves that are expensive
and non-renewable, and which are expected to grow with
the increasing penetration of renewables. The most promising
solution to this problem is the use of demand response, i.e. load
participation in frequency control. Yet it is still unclear how
to efficiently integrate load participation without introducing
instabilities and violating operational constraints.

In this paper we present a comprehensive load-side fre-
quency control mechanism that can maintain the grid within
operational constraints. Our controllers can rebalance supply
and demand after disturbances, restore the frequency to its
nominal value and preserve inter-area power flows. Further-
more, our controllers are distributed (unlike generation-side),
fair among participating loads, and can further maintain line
flows within thermal limits. We prove that such a distributed
load-side control is globally asymptotically stable and illustrate
its convergence with simulation.

I. INTRODUCTION

Frequency control maintains the frequency of a power net-
work at its nominal value when demand or supply fluctuates.
It is traditionally implemented on the generation side and
consists of three mechanisms that work in concert [1]–[3].
The primary frequency control, called the droop control and
completely decentralized, operates on a timescale up to low
tens of seconds and uses a governor to adjust, around a set-
point, the mechanical power input to a generator based on the
local frequency deviation. The primary control can rebalance
power and stabilize the frequency but does not restore the
nominal frequency. The secondary frequency control (called
automatic generation control) operates on a timescale up to
a minute or so and adjusts the setpoints of governors in a
control area in a centralized fashion to drive the frequency
back to its nominal value and the inter-area power flows
to their scheduled values. Economic dispatch operates on a
timescale of several minutes or up and schedules the output
levels of generators that are online and the inter-area power
flows. See [4], [5] for a recent hierarchical model of power
systems and their stability analysis.

Load-side participation in frequency control offers many
advantages, including faster response, lower fuel consump-
tion and emission, and better localization of disturbances.
The idea of using frequency adaptive loads dates back to
[6] that advocates their large scale deployment to “assist or
even replace turbine-governed systems and spinning reserve.”
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They also proposed to use spot prices to incentivize the users
to adapt their consumption to the true cost of generation
at the time of consumption. Remarkably it was emphasized
back then that such frequency adaptive loads will “allow the
system to accept more readily a stochastically fluctuating
energy source, such as wind or solar generation” [6]. This
is echoed recently in, e.g., [7]–[13] that argue for “grid-
friendly” appliances, such as refrigerators, water or space
heaters, ventilation systems, and air conditioners, as well as
plug-in electric vehicles to help manage energy imbalance.
Simulations in all these studies have consistently shown
significant improvement in performance and reduction in the
need for spinning reserves. A small scale project by the
Pacific Northwest National Lab in 2006–2007 demonstrated
the use of 200 residential appliances in primary frequency
control that automatically reduce their consumption when
the frequency of the household dropped below a threshold
(59.95Hz) [14].

Despite these simulation studies and field trials, there has
not been much analytic study of how large-scale deploy-
ment of distributed frequency control will behave until very
recently. Some notable examples include the works on dis-
tributed secondary frequency control in power systems [5],
[15]–[17] and microgrids [18]–[22]. However, it is yet to
be designed a general solution that can rebalance supply and
demand, restore nominal frequency, preserve inter-area flows
and avoid thermal limits violations.

Recently another model is presented in [23] that formu-
lates an optimal load control (OLC) problem where the
objective is to minimize the aggregate disutility of tracking
an operating point subject to power balance over the net-
work. The main conclusion is that decentralized load-side
primary frequency control, coupled with the power network
dynamics, serves as a primal-dual algorithm to solve (the
Lagrangian dual of) OLC. Like the droop control on the
generation side, the scheme in [23] rebalances power and
resynchronizes frequencies after a disturbance, but does not
drive the system to a desirable operating point. Similar
ideas since then has then been developed to include AGC
and governor dynamics [24] and to use load-side secondary
frequency control to restore the frequency to its nominal
value [25].

In this paper, we extend this framework to allow the
system restore the desired operational constraints. We first
modify the OLC problem to include the operational con-
straints in Section III. The crux of our contribution is the
introduction of surrogate line flows that in equilibrium are
equal to the real line flows. This allows to derive a distributed
solution that preserves the primal-dual interpretation of the



network dynamics (Section IV). We prove that our design is
globally asymptotically stable and converges to an optimal
solution of the modified OLC (Section V). Finally we present
simulations to illustrate these results (Section VI).

II. PRELIMINARIES

Let R be the set of real numbers and N the set of natural
numbers. Given a finite set S ⊂ N we use |S| to denote its
cardinality. For a set of scalar numbers ai ∈ R, i ∈ S, we
denote aS as the column vector of the ai components, i.e.
aS := (ai, ∈ S) ∈ R|S|; we usually drop the subscript S
when the set is known from the context. Similarly, for two
vectors a ∈ R|S| and b ∈ R|S′| we define the column vector
x = (a, b) ∈ R|S|+|S′|. Given any matrix A, we denote its
transpose as AT and use Ai to denote the ith row of A. We
will also use AS to denote the sub matrix of A composed
only of the rows Ai with i ∈ S. The diagonal matrix of
a sequence {ai, i ∈ S}, is represented by diag(ai)i∈S .
Similarly, for a sequence of matrices {Ah, h ∈ S} we
let blockdiag(Ah)h∈S denote the block diagonal matrix.
Finally, we use 1 (0) to denote the vector of all ones (zeros).

A. Network Model

We consider a power network described by a directed
graph G(N , E) where N = {1, ..., |N |} is the set of buses
and E ⊂ N ×N is the set of transmission lines denoted by
either e or ij such that if ij ∈ E , then ji 6∈ E . We partition
the buses N = G ∪ L and use G and L to denote the set of
generator and load buses respectively.

The evolution of the transmission network is described by

Miω̇i = Pm
i − (di + d̂i)−

∑
e∈E

Ci,ePe i ∈ G (1a)

0 = Pm
i − (di + d̂i)−

∑
e∈E

Ci,ePe i ∈ L (1b)

Ṗij = Bij(ωi − ωj) ij ∈ E (1c)

d̂i = Diωi i ∈ N (1d)

where di denotes an aggregate controllable load, d̂i denotes
an aggregate uncontrollable but frequency-sensitive load as
well as damping loss at generator i, Mi is the generator’s
inertia, Pm

i is the mechanical power injected by a generator
i ∈ G, −Pm

i is the aggregate power consumed by constant
loads for i ∈ L, and Pij is the line real power flow from i
to j. Finally, Ci,e are the elements of the incidence matrix
C ∈ R|N |×|E| of the graph G(N , E) such that Ci,e = −1 if
e = ji ∈ E , Ci,e = 1 if e = ij ∈ E and Ci,e = 0 otherwise.

Equation (1) describes the evolution of the frequency and
line flows when their values are close to schedule values
P 0
ij and ω0. In other words, Pij = P 0

ij + δPij and ωi =
ω0 + δωi with δPij and δωi small enough. We also assume
purely inductive lines as well as the standard decoupling
approximation [26]. However, the analysis can be extended
to networks with constant R/X ratio [27]. We refer the reader
to [28] for a detailed motivation of the model.

For notational convenience we will use whenever needed
the vector form of (1), i.e.

MGω̇G = Pm
G − (dG + d̂G)− CGP

0 = Pm
L − (dL + d̂L)− CLP

Ṗ = DBC
Tω

d̂ = Dω

where the matrices CL and CG are defined by splitting the
the rows of C between generator and load buses, i.e. C =
[CT

G CT
L ]

T , D = diag(Di)i∈N , DB = diag(Bij)ij∈E and
MG = diag(Mi)i∈G

B. Operational Constraints

We denote each control area using either k or l, and let
K := {1, . . . , |K|} denote the set of areas. Within each area,
the Automatic Generation Control (AGC) scheme seeks to
balance supply and demand, while keeping the frequency to
its nominal value as well as preserving a constant power
transfer outside the area, i.e.∑

i∈Nk

∑
e∈E

Ci,ePe = eTkCP = P̂k, ∀k ∈ K, (2)

where Nk ⊂ N is the set of buses of area k ∈ K, ek ∈ R|N |,
k ∈ K, is a vector with elements (ek)i = 1 if i ∈ Nk and
(ek)i = 0 otherwise, P̂k is the net scheduled power injection
of area k.

Notice that if we define

Ĉ[ := EKC (3)

with EK := [e1 . . . e|K|]
T and Ĉ[ ∈ R|K|×|E|, then

constraint (2) can be compactly expressed using

Ĉ[P = P̂ (4)

where P̂ = (P̂k)k∈K. It is easy to see that Ĉ[
k,e (e = ij) is

equal to 1 if ij is an inter-area line with i ∈ Nk, −1 if ij is
an inter-area line with j ∈ Nk, and 0 otherwise.

Finally, the thermal limit constraints are usually given by

P ≤ P ≤ P̄ (5)

where P̄ := (P̄e)e∈E and P := (P e)e∈E represent the line
flow limits; usually P = −P̄ so that we get |P | ≤ P̄ .

C. Fair Load Control

Suppose the system (1) is in equilibrium, i.e. ω̇i = 0
for all i and Ṗij = 0 for all ij, and at time 0, there
is a disturbance represented by the vector (perturbations)
Pm := (Pm

i , i ∈ G ∪ L) that produces a power imbalance.
Then, we are interested in designing a distributed control
mechanism that rebalances the system while preserving the
frequency in its nominal value as well as maintaining the
scheduled power transfer between areas. Furthermore, we
would like this mechanism to be fair among all the users (or
loads) that are willing to adapt and to impose thermal limit
constraints.

We use ci(di) and d̂2
i

2Di
to denote the cost or disutility of

changing the load consumption by di and d̂i respectively.



This allows us to formally describe our notion of fairness in
terms of the loads’ welfare. More precisely, we shall say that
a load control (d, d̂) is fair if it solves the following problem.

Problem 1 (WELFARE):

minimize
d,d̂

∑
i∈N

ci(di) +
d̂2i
2Di

(6)

subject to operational constraints.
Problem 1 has been originally proposed in [28] for the

case where the operational constraint is to balance supply
and demand, i.e. ∑

i∈N
(di + d̂i) =

∑
i∈N

Pm
i . (7)

It is shown in [28] that when

di = c
′−1
i (ωi), (8)

then (1) is a distributed primal-dual algorithm that solves (6)
subject to (7).

Therefore, one can use problem (6)-(7) to forward en-
gineering the desired controllers, by means of primal-dual
decomposition, that can rebalance supply and demand. Un-
fortunately, system (1) and (8) suffers from the disadvantage
that the optimal solution of (6)-(7) may not satisfy the
additional operational constraints described in Section II-B.

In the next section we shall see that a clever modification
of (6)-(7) will be able to restore the nominal frequency while
maintaining the interpretation of (1) as a component of the
primal-dual algorithm that solves the modified optimization
problem. An additional byproduct of the formulation is that
we can also impose any type of linear equality and inequality
constraint that the operator may require.

III. OPTIMAL LOAD-SIDE INTRA AREA CONTROL

We now proceed to describe the optimization problem that
will be used to derive the distributed controllers that achieve
our goals. The crux of our solution comes from including
additional constraints to Problem 1 that implicitly guarantee
the desired operational constraints, yet still preserves the
desired structure which allows the use of (1) as part of the
optimization algorithm.

Thus, we will use the following modified version of Prob-
lem 1 called Optimal Load-side Frequency Control (OLFC)

Problem 2 (OLFC):

minimize
d,d̂,P,v

∑
i∈N

ci(di)+
d̂2i
2Di

(9a)

subject to

Pm − (d+ d̂) = CP (9b)
Pm − d = Lav (9c)

Ĉ[DaC
T v = P̂ (9d)

P ≤ DaC
T v ≤ P̄ (9e)

where Da := diag(aij)ij∈E , La := CDaC
T is the

ae-weighted Laplacian matrix and aij , ij ∈ E , are some
positive weights whose values will be defined later.

Although not clear at first sight, the constraint (9c)
implicitly enforces that any optimal solution of OLFC
(d∗, d̂∗, P ∗, v∗) will restore the frequency to its nominal
value, i.e. d̂∗i = Diω

∗ = 0. Similarly, we will use con-
straint (9d) to impose (2) (or equivalently (4)) and (9e) to
impose (5).

Throughout this paper we make the following assump-
tions:

Assumption 1 (Cost function): The cost function ci(di) is
α-strongly convex and second order differentiable (ci ∈ C2

with c′′i (di) ≥ α > 0) in the interior of its domain Di :=
[di, di] ⊆ R, such that ci(di) → +∞ whenever di → ∂Di.

Assumption 2 (Slater Condition): The OLFC problem (9)
is feasible [29, Ch. 5.2.3].

The remainder of this section is devoted to understanding
the properties of the optimal solutions of OLFC. We will
use νi, λi and πk as Lagrange multipliers of constraints
(9b), (9c) and (9d), and ρ+ij and ρ−ij as multipliers of the
right and left constraints of (9e), respectively. In order to
make the presentation more compact sometimes we will
use x = (P, v) ∈ R|E|+|N | and σ = (ν, λ, π, ρ+, ρ−) ∈
R2|N |+|I|+2|E|, as well as σi = (νi, λi), σk = (πk) and
σij = (ρ+ij , ρ

−
ij). We will also use ρ := (ρ+, ρ−).

Next, we consider the dual function D(σ) of the OLFC
problem.

D(σ) = inf
d,d̂,x

L(d, d̂, x, σ) (10)

where

L(d, d̂, x, σ) =
∑
i∈N

(ci(di) +
d̂2i
2Di

) + νT (Pm − (d+ d̂)

− CP ) + λT (Pm − d− Lav) + πT (Ĉ[DaC
T v − P̂ )

+ ρ+T (DaC
T v − P̄ ) + ρ−T (P −DaC

T v)

=
∑
i∈N

(ci(di)− (λi + νi)di +
d̂2i
2Di

− νid̂i + (νi + λi)P
m
i )

− PTCT ν − vT (Laλ− CDaĈ
[Tπ − CDa(ρ

+ − ρ−))

− πT P̂ − ρ+T P̄ + ρ−TP
(11)

Since ci(di) and d̂2
i

2Di
are radially unbounded, the mini-

mization over d and d̂ in (10) is always finite for given x
and σ. However, whenever CT ν 6= 0 or Laλ−CDaĈ

[Tπ−
CDa(ρ

+ − ρ−) 6= 0, one can modify P or v to arbitrarily
decrease (10). Thus, the infimum is attained if and only if
we have

CT ν = 0 and (12a)

Laλ− CDaĈ
[Tπ − CDa(ρ

+ − ρ−) = 0. (12b)

Moreover, the minimum value must satisfy

c′i(di) = νi + λi and
d̂i
Di

= νi, ∀i ∈ N . (13)

Using (12) and (13) we can compute the dual function

D(σ) =

®
Φ(σ) σ ∈ Ñ

−∞ otherwise,
(14)



where

Ñ :=
¶
σ ∈ R2|N |+|K|+2|E| : (12a) and (12b)

©
.

and the function Φ(σ) is decoupled in σi = (νi, λi), σk =
(πk) and σij = (ρ+ij , ρ

−
ij). That is,

Φ(σ) =
∑
i∈N

Φi(σi) +
∑
k∈K

Φk(σk) +
∑
ij∈E

Φij(σij) (15)

where Φk(σk) = −πkP̂k, Φij(σij) = ρ−ijP ij − ρ+ijP̄ij and

Φi(σi) = ci(di(σi))+(νi+λi)(P
m
i −di(σi))−

Di

2
ν2i , (16)

with

di(σi) = c′i
−1

(νi + λi). (17)

The dual problem of the OLFC (DOLFC) is then given
by
DOLFC:

maximize
ν,λ,π,ρ

∑
i∈N

Φi(νi, λi) +
∑
k∈K

Φk(πk) +
∑
ij∈E

Φij(ρij)

subject to (12a) and (12b)

ρ+ij ≥ 0, ρ−ij ≥ 0, ij ∈ E (18)

Although D(σ) is only finite on Ñ , Φi(σi), Φk(σk) and
Φij(σij) are finite everywhere. Thus sometimes we use the
extended version of the dual function (15) instead of D(σ),
knowing that D(σ) = Φ(σ) for σ ∈ Ñ . Given any S ⊂ N ,
K ⊂ K or U ⊂ E we also define ΦS(σS) :=

∑
i∈S Φi(σi),

ΦK(σK) :=
∑

k∈K Φk(σk) and ΦU (σU ) =
∑

ij∈U Φij(σij)
such that Φ(σ) = ΦN (σN ) + ΦK(σK) + ΦE(σE).

The following lemmas describe several properties of our
optimization problem that we will use in latter sections.

Lemma 3 (Strict concavity of ΦS(σS)): For any
nonempty set S ⊆ N , the function ΦS(σS) is the
sum of strictly concave functions Φi(σi) and it is therefore
strictly concave. Moreover, the (extended) dual function
Φ(σ) is strictly concave with respect to σN = (ν, λ).

Proof: From the derivation of Φi(σi) it is easy to show
that

Φi(σi) = min
di,d̂i

Li(di, d̂i, σi) (19)

where

Li(di, d̂i, σi) := ci(di) +
d̂2i
2Di

+ (νi + λi)(P
m
i − di)− νid̂i.

Notice that Li(di, d̂i, σi) is linear in σi and strictly convex
in (di, d̂i).

Let di(σi) and d̂i(σi) be the unique minimizer of (19).
Then from (13) it follows that di(σi) = di(νi + λi) =
c′−1
i (νi + λi) and d̂i(σi) = Diνi.

We will first show that, given σi,1 6= σi,2, then

(di(σi,1), d̂i(σi,1)) 6= (di(σi,2), d̂i(σi,2)). (20)

Suppose by contradiction that there is σi,1 6= σi,2 such that

(di(σi,1), d̂i(σi,1)) = (di(σi,2), d̂i(σi,2)).

Then by (13), c′−1
i (νi,1 + λi,1) = c′−1

i (νi,2 + λi,2) and
Diνi,1 = Diνi,2. Thus, νi,1 = νi,2 = ν and c′−1

i (ν +
λi,1) = c′−1

i (ν + λi,2). But since ci(·) is strictly convex,
c′i and its inverse are strictly increasing which implies that
λi,1 = λi,2 = λ. Contradiction.

Finally, let θ ∈ [0, 1] and consider any two σi,1 6= σi,2.
Then,

Φi(θσi,1 + (1− θ)σi,2) = min
di,d̂i

Li(di, d̂i, θσi,1 + (1− θ)σi,2)

= min
di,d̂i

θLi(di, d̂i, σi,1) + (1− θ)Li(di, d̂i, σi,2)

> θmin
di,d̂i

Li(di, d̂i, σi,1) + (1− θ) min
di,d̂i

Li(di, d̂i, σi,2)

= θ Φi(σi,1) + (1− θ)Φi(σi,2)

where the strict inequality follows from (20). Thus, Φi(σi) is
strictly concave and by using the definition of strict concavity
we get ΦS(σ) is strictly concave ∀S ⊆ N .

Lemma 4 (OLFC Optimality): Given a connected graph
G(N , E), then there exists a scalar ν∗ such that
(d∗, d̂∗, x∗, σ∗) is a primal-dual optimal solution of OLFC
and DOLFC if and only if (d∗, d̂∗, x∗) is primal feasible
(satisfies (9b)-(9e)), σ∗ is dual feasible (satisfies (12) and
(18)),

d̂∗i = Diν
∗
i , d∗i = c′−1

i (ν∗i + λ∗
i ), ν∗i = ν∗, i ∈ N , (21)

and

ρ+∗
ij (aij(v

∗
i − v∗j )− P̄ij) = 0, ij ∈ E , (22a)

ρ−∗
ij (P ij − aij(v

∗
i − v∗j )) = 0, ij ∈ E (22b)

Moreover, d∗, d̂∗, ν∗ and λ∗
i are unique with ν∗ = 0.

Proof: Assumptions 1 and 2 guarantee that the solution
to the primal (OLFC) is finite. Moreover, since by Assump-
tion 2 there is a feasible d ∈ D = Π

|N |
i=1Di, then the Slater

condition is satisfied [29] and there is zero duality gap.
Thus, since OLFC only has linear equality constraints,

we can use Karush-Kuhn-Tucker (KKT) conditions [29]
to characterize the primal dual optimal solution. Thus
(d∗, d̂∗, x∗, σ∗) is primal dual optimal if and only if we have:

(i) Primal feasibility: (9b)-(9e)
(ii) Dual feasibility: (12) and (18)

(iii) Stationarity:

∂

∂d
L(d, d̂, x, σ) = 0,

∂

∂d̂
L(d, d̂, x, σ) = 0

and
∂

∂x
L(d, d̂, x, σ) = 0.

(iv) Complementary slackness:

ρ+∗
ij (aij(v

∗
i − v∗j )− P̄ij) = 0, ij ∈ E

and

ρ−∗
ij (P ij − aij(v

∗
i − v∗j )) = 0, ij ∈ E .

KKT conditions (i), (ii) and (iv) are already implicit by
assumptions of the lemma. Furthermore, since the graph G
is connected then (12a) is equivalent to

ν∗i = ν∗ ∀i ∈ N .



which is the third condition of (21).
Now, using (11), Stationarity (iii) is equivalent to (ii) and

∂L

∂di
(d∗, d̂∗, x∗, σ∗) = c′i(d

∗
i )− (ν∗i + λ∗

i ) = 0 (23a)

∂L

∂d̂i
L(d∗, d̂∗, x∗, σ∗) =

d̂∗i
Di

− ν∗i = 0 (23b)

which are the remaining conditions of (21).
Since ci(di) and d̂2

i

2Di
are strictly convex functions, by the

same argument in the proof of Lemma 3 we get that ν∗i and
λ∗
i are unique. To show ν∗ = 0 we use (i). Adding (9b) over

i ∈ N gives

0 =
∑
i∈N

(
Pm
i − (d∗i + d̂∗i )−

∑
e∈E

CiePe

)
=
∑
i∈N

Ä
Pm
i − (d∗i + d̂∗i )

ä
−

∑
e=ij∈E

(CiePe + CjePe)

=
∑
i∈N

Ä
Pm
i − (d∗i + d̂∗i )

ä
(24)

and similarly (9c) gives

0 =
∑
i∈N

Pm
i − d∗i (25)

Thus, subtracting (24) from (25) gives 0 =
∑

i∈N d̂∗i =∑
i∈N Diν

∗ = ν∗
∑

i∈N Di and since Di > 0 ∀i ∈ N , it
follows that ν∗ = 0.

IV. DISTRIBUTED OPTIMAL LOAD CONTROL

We show how we can leverage the power network dynam-
ics to solve the OLFC problem in a distributed way. Our
solution is based on the classical primal dual optimization
algorithm that has been of great use to design congestion
control mechanisms in communication networks [30]–[33].

Let

L(x, σ) = minimize
d,d̂

L(d, d̂, x, σ)

= L(d(σ), d̂(σ), x, σ)

= Φ(σ)− PTCT ν

− vT (Laλ− CDaĈ
[Tπ − CDa(ρ

+ − ρ−)) (26)

where L(d, d̂, x, σ) is defined as in (11), d(σ) := (di(σi))
and d̂(σ) := (d̂i(σi)) according to (21).

Similarly to [28] we propose the following partial primal-
dual law

ν̇G = ζνG
(
Pm
G − (dG(σG) +DGνG)− CGP

)
(27a)

0 = Pm
L − (dL(σL) +DLνL)− CLP (27b)

λ̇ = ζλ (Pm − d(σ)− Lav) (27c)

π̇ = ζπ
Ä
Ĉ[DaC

T v − P̂
ä

(27d)

ρ̇+ = ζρ
+ [

DaC
T v − P̄

]+
ρ+ (27e)

ρ̇− = ζρ
− [

P −DaC
T v
]+
ρ− (27f)

Ṗ = χP (CT ν) (27g)

v̇ = χv
Ä
Laλ− CDaĈ

[Tπ − CDa(ρ
+ − ρ−)

ä
(27h)

where ζνG = diag(ζνi )i∈G , ζλ = diag(ζλi )i∈N , ζπ =

diag(ζπk )k∈K, ζρ
+

= diag(ζρ
+

e )e∈E , ζρ
−

= diag(ζρ
−

e )e∈E ,
χP = diag(χP

e )e∈E and χv = diag(χv
i )i∈N .

The operator [·]+u is a element-wise projection that main-
tains each element of the u(t) within the positive orthant
when u̇ = [·]+u , i.e. given any vector a with same dimension
as u then [a]+u is defined element-wise by

[ae]
+
ue

=

®
ae if ae > 0 or ue > 0,

0 otherwise.
(28)

One property that will be used later is that given any constant
vector u∗ ≥ 0, then

(u− u∗)T [a]+u ≤ (u− u∗)Ta (29)

since for any pair (ue, ae) that makes the projection active
we must have by definition ue = 0 and ae < 0 and therefore

(ue − u∗
e)ae = −u∗

eae ≥ 0 = (ue − u∗
e)

T [ae]
+
ue
.

Equations (27a), (27b) and (27g) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (27) for the special case when ζνi = M−1

i and
χP
ij = Bij . Therefore, we can interpret the frequency ωi as

the Lagrange multiplier νi.
This observation motivates us to propose a distributed load

control scheme that is naturally decomposed into
Power Network Dynamics:

ω̇G = M−1
G (Pm

G − (dG + d̂G)− CGP ) (30a)

0 = Pm
L − (dL + d̂L)− CLP (30b)

Ṗ = DBC
Tω (30c)

d̂ = Dω (30d)

and
Dynamic Load Control:

λ̇ = ζλ (Pm − d(σ)− Lav) (31a)

π̇ = ζπ
Ä
Ĉ[DaC

T v − P̂
ä

(31b)

ρ̇+ = ζρ
+ [

DaC
T v − P̄

]+
ρ+ (31c)

ρ̇− = ζρ
− [

P −DaC
T v
]+
ρ− (31d)

v̇ = χv
Ä
Laλ− CDaĈ

[Tπ − CDa(ρ
+ − ρ−)

ä
(31e)

d = c′
−1

(ω + λ) (31f)

Equations (30) and (31) show how the network dynam-
ics can be complemented with dynamic load control such
that the whole system amounts to a distributed primal-dual
algorithm that tries to find a saddle point on L(x, σ). The
next section shows that this system does achieve optimality
as intended.

V. OPTIMALITY AND CONVERGENCE ANALYSIS

In this section we will show that the system (30)-(31)
can fairly rebalance supply and demand, restore the nominal
frequency, and preserve inter-area flow schedules and thermal
limits.



We will achieve this objective in two steps. Firstly, we will
show that every equilibrium point of (30)-(31) is an optimal
solution of (9). This guarantees that a stationary point of
the system balances supply and demand, is fair among the
controllable loads, and achieves zero frequency deviation.

Secondly, we will show that every trajectory
(d(t), d̂i(t), P (t), v(t), ω(t), λ(t), π(t), ρ+(t), ρ−(t))
converges to an equilibrium point of (30)-(31). Moreover,
the equilibrium point will satisfy (2) and (5) under mild
conditions.

Theorem 5 (Optimality): Given a point p∗ = (d∗, d̂∗, x∗,
σ∗), then p∗ is an equilibrium point of (30)-(31) if and only
if is a primal-dual optimal solution to the OLFC problem.

Proof: The proof of this theorem is a direct application
of Lemma 4. Let (d∗, d̂∗, x∗, σ∗) be an equilibrium point of
(30)-(31). Then, by (30c) and (31c)-(31e), σ∗ is dual feasible.

Similarly, since ω̇i = 0, λ̇i = 0, π̇k = 0, ρ̇+ij = 0 and
ρ̇−ij = 0, then (30a)-(30b) and (31a)-(31d) are equivalent to
primal feasibility, i.e. (d∗, d̂∗, P ∗, v∗) is a feasible point of
(9). Finally, by definition of (30)-(31) conditions (21) and
(22) are always satisfied by any equilibrium point. Thus
we are under the conditions of Lemma 4 and therefore
p∗ = (d∗, d̂∗, x∗, σ∗) is primal-dual optimal which also
implies that ω∗ = 0.

Remark 6: Theorem 5 implies that every equilibrium so-
lution of (30)-(31) is optimal with respect to OLFC. How-
ever, it guarantees neither convergence to it nor that the line
flows satisfy (2) and (5).

The rest of this section is devoted to showing that in
fact for every initial condition (P (0), v(0), ω(0), λ(0), π(0),
ρ+(0), ρ−(0)), the system (30)-(31) converges to one of such
optimal solution. Furthermore, we will show that, under mild
assumption on Da and P (0), P (t) converges to a P ∗ that
satisfies (2) and (5).

Since we showed in Section IV that (30)-(31) are just
a special case of (27), we will provide our convergence
result for (27). Our global convergence proof leverages the
results of [34] on global convergence in network flow control.
Unfortunately, the results presented there cannot be readily
applied as (27) is not a full primal-dual gradient law due
to constraint (27b). However, the next lemma shows that
(27) amounts to a primal-dual gradient law with respect to
a different Lagrangian.

Lemma 7 (Primal-dual Gradient Law): Let y = (νG ,
λ, π, ρ)1 and consider the reduced Lagrangian

L(x, y) = maximize
νL

L(x, σ). (32)

Then, L(x, y) is concave in y, convex in x and the dynamics
(27) amount to

ẏ = Y

ï
∂

∂y
L(x, y)T

ò+
ρ

and ẋ = −X
∂

∂x
L(x, y)T (33)

where the projection [a]+ρ only acts in the ρ positions of a,
Y = blockdiag(ζνG , ζ

λ, ζπ, ζρ
+

, ζρ
−
) and X = blockdiag(

χP , χv).

1Recall that ρ = (ρ+, ρ−)

Moreover, under Assumption 1, any saddle point (x∗, y∗)
of L(x, y) is unique in νG and λ.

Proof:
By Lemma 3 and (26), L(x, σ) is strictly concave in σN =

(ν, λ). Therefore, it follows that there exists a unique

ν∗L(x, y) = argmax
νL

L(x, σ). (34)

Moreover, by stationarity, ν∗L(x, y) must satisfy

∂L

∂νL
(x, y, ν∗L(x, y)) = (35a)

=
∂ΦL

∂νL
(y, ν∗L(x, y))− (CLP )T = 0 (35b)

which is equivalent to (27b), i.e. ν∗L(x, y) implicitly satisfies
(27b).

We now apply the envelope theorem [35] on (32) to
compute ∂

∂xL(x, y) and ∂
∂yL(x, y) using

∂

∂x
L(x, y) =

∂

∂x
L(x, y, νL)

∣∣∣∣
ν∗
L(x,y)

(36a)

∂

∂y
L(x, y) =

∂

∂y
L(x, y, νL)

∣∣∣∣
ν∗
L(x,y)

(36b)

Using equation (36), (33) only differs from (27a) and
(27c)-(27h) on the locations where νL must be substituted
with ν∗L(x, y). However, since there is a unique νL that sat-
isfies (27b), then it follows that (33) and (27) are equivalent
representations of the same system.

Finally, given any saddle-point of (x∗, y∗),
(d∗, d̂∗, x∗, y∗, ν∗L) is a saddle point of L(d, d̂, x, σ).
Therefore, using Lemma 4 the uniqueness properties follow.

We will also use the following results in our convergence
proof.

Lemma 8 (Differentiability of ν∗L(x, y)): Given any
(x, y), the maximizer of (32), ν∗L(x, y), is continuously
differentiable provided ci(·) is strongly convex. Furthermore,
the derivative is given by

∂

∂x
ν∗L(x, y) =

P v

[ ]−(DL + d′L)
−1CL 0 νL (37)

∂

∂y
ν∗L(x, y) =

νG λG λL π ρ[ ]
0 0 −(DL + d′L)

−1d̂′L 0 0 νL

(38)

where DS := diag(Di)i∈S and

d′S =

®
diag(d′i(λi + ν∗i (x, y)))i∈S if S ⊆ L
diag(d′i(λi + νi))i∈S if S ⊆ G

Proof: We first notice that ν∗i (x, y), i ∈ L, depends
only on λi and CiP :=

∑
e∈E Ci,ePe. Which means that

∂
∂vν

∗
L(x, y) = 0, ∂

∂νG
ν∗L(x, y) = 0, ∂

∂πν
∗
L(x, y) = 0,

∂
∂ρν

∗
L(x, y) = 0 and ∂

∂λL
ν∗L(x, y) is diagonal.



Now, by definition of ν∗L(x, y), for any i ∈ L we have
∂

∂νi
L(x, y, ν∗L(x, y)) = (39)

= Pm
i − (Diν

∗
i (x, y) + di(λi + ν∗i (x, y)))−

∑
e∈E

Ci,ePe

(40)
= 0 (41)

Therefore, if we fix P and take the total derivative of
∂

∂νi
L(x, y, ν∗L(x, y)) with respect to λi we obtain

0 =
d

dλi

Å
∂

∂νi
L(x, y, ν∗L(x, y))

ã
(42)

= −(Di + d̂′i(λi + ν∗i ))
∂

∂λi
ν∗i − d̂′i(λi + ν∗i ) (43)

where here we used ν∗i for short of ν∗i (x, y).
Now since by assumption ci(·) is strongly convex, i.e.

c′′i (·) ≥ α, d′i(·) = 1
c′′
i
(·) ≤

1
α < ∞. Thus, (Di + d′i) is finite

and strictly positive, which implies that
∂

∂λi
ν∗i (x, y) = − d′i(λi + ν∗i (x, y))

( Di + d′i(λi + ν∗i (x, y)) )
, i ∈ L.

Similarly, we obtain
∂

∂P
ν∗i (x, y) = − 1

( Di + d′i(λi + ν∗i (x, y)) )
Ci, i ∈ L.

where Ci is the ith row of C.
Notice that whenever d′i(λi + ν∗i ) exists, then ∂

∂xν
∗
i and

∂
∂yν

∗
i also exists.

Lemma 9 (Second order derivatives of L(x, y)):
Whenever Lemma 8 holds, then we have

∂2

∂x2
L(x, y) =

P vï ò
CT

L (DL + d′L)
−1CL 0 P

0 0 v
(44)

and
∂2

∂y2
L(x, y) =

−

νG λG λL π ρ


(DG + d′G) d′G 0 0 0 νG

d′G d′G 0 0 0 λG

0 0 DL(DL + d′L)
−1d′L 0 0 λL

0 0 0 0 0 π

0 0 0 0 0 ρ

(45)

with ∂2

∂x2L(x, y) � 0 and ∂2

∂y2L(x, y) � 0.
Proof: Using envelope theorem [35] in (32) we have

∂L

∂x
(x, y) =

∂L

∂x
(x, y, ν∗L(x, y))

which implies that

∂2L

∂x2
(x, y) =

∂

∂x

ï
∂L

∂x
(x, y, ν∗L(x, y))

ò
=

∂2L

∂x2
(x, y, ν∗L(x, y)) +

∂2L

∂x∂νL
(x, y, ν∗L(x, y))

∂

∂x
ν∗L(x, y)

=
∂2L

∂x∂νL
(x, y, ν∗L(x, y))

∂

∂x
ν∗L(x, y). (46)

where the last step follow from L(x, σ) being linear in x.
Now, by definition of ν∗L(x, y) it follows that

∂L

∂νL
(x, y, ν∗L(x, y)) = 0. (47)

Differentiating (47) with respect to x gives

0 =
∂2L

∂νL∂x
(x, y, ν∗L(x, y)) +

∂2L

∂ν2L
(x, y, ν∗L(x, y))

∂

∂x
ν∗L(x, y)

and therefore

∂2L

∂x∂νL
(x, y, ν∗L(x, y)) =

ï
∂2L

∂νL∂x
(x, y, ν∗L(x, y))

òT
= − ∂

∂x
ν∗L(x, y)

T ∂2L

∂ν2L
(x, y, ν∗L(x, y)). (48)

Substituting (48) into (46) gives

∂2L

∂x2
(x, y) = − ∂

∂x
ν∗L(x, y)

T ∂2L

∂ν2L
(x, y, ν∗L(x, y))

∂

∂x
ν∗L(x, y).

(49)

It follows from (35) and (16) that

∂2L

∂ν2L
(x, y, ν∗L(x, y)) =

∂2ΦL

∂ν2L
(ν∗L(x, y), λL)

= −(DL + d′L). (50)

Therefore, substituting (37) and (50) into (49) gives (44).
A similar calculation using (38) gives (45).
We now present our main convergence result. Let E be

the set of equilibrium points of (27)

E :=

ß
(x, σ) :

∂L

∂x
(x, σ) = 0,

∂L

∂σ
(x, σ) = 0

™
,

which by Theorem 5 is the set of optimal solutions of the
OLFC problem.

Theorem 10 (Global Convergence): The set E of equi-
librium points of the partial primal dual algorithm (27) is
globally asymptotically stable. Furthermore, each individual
trajectory converges to a unique point within E that is
optimal with respect to the OLFC problem.

Proof: By Lemma 7, we know that partial primal-
dual dynamics (27) can be interpreted as a complete prima-
dual gradient law of the reduced Lagrangian (32). Therefore,
following [34] we consider the candidate Lyapunov function

U(z) = (z − z∗)TZ−1(z − z∗) (51)

where z = (x, y), Z = blockdiag(X,Y ) and z∗ = (x∗, y∗)
is any equilibrium point of (33).

Let f(z) = [− ∂
∂xL(x, y)

∂
∂yL(x, y)]

T such that (33)
becomes

ż = Z[f(z)]+ρ . (52)

Notice that f(z∗) = 0 for all optimal solutions z∗ =
(x∗, y∗).



Then it follows from Lemma 7 that

U̇(z) =
1

2
((z − z∗)T [f(z)]+ρ + [f(z)]+ρ

T
(z − z∗)) (53)

≤ 1

2
((z − z∗)T f(z) + f(z)T (z − z∗)) (54)

=
1

2

∫ 1

0

(z − z∗)T
ï
∂

∂z
f(z(s))T +

∂

∂z
f(z(s))

ò
(z − z∗)ds

(55)

=

∫ 1

0

(x− x∗)T
ï
− ∂2

∂x2
L(x(s), y(s))

ò
(x− x∗)ds︸ ︷︷ ︸

≤0

(56)

+

∫ 1

0

(y − y∗)T
ï
∂2

∂y2
L(x(s), y(s))

ò
(y − y∗)ds︸ ︷︷ ︸

≤0

(57)

where (53) follows from (52) and (54) from (29). The vector
z(s) = (x(s), y(s)) := (z−z∗)s+z∗, and (55) follows from
the fact that f(z) = f(z)−f(z∗) =

∫ 1

0
∂
∂z f(z(s))(z−z∗)ds.

Finally, equations (56) and (57) follow from the definition
of f(z) and z.

Therefore, since U(x, y) is radially unbounded, Las-
sale’s Invariance Principle [36] asserts that the trajectories
(x(t), y(t)) converge to the largest invariance set within
{U̇(x, y) ≡ 0}. This implies that the trajectories (x(t), σ(t))
of (27) must converge to the largest invariant set

M ⊆ {(x, σ) : νL = ν∗L(x, y), U̇(x, y) ≡ 0}.

We now characterize M . Notice that in order to have U̇ ≡
0, then both terms (56) and (57) must be zero.

Using Lemma 9, it follows that∫ 1

0

(x− x∗)T
ï
− ∂2

∂x2
L(x(s), y(s))

ò
(x− x∗)ds ≡ 0

if and only if

(P − P ∗)TCT
L (DL + d′L)

−1CL(P − P ∗) ≡ 0

which implies CLP ≡ CLP
∗ since (DL + d′L)

−1 � 0.
A similar argument for (57) gives

νi(t) ≡ 0, i ∈ G and λi(t) ≡ λ∗
i , i ∈ N (58)

Therefore, since CLP ≡ CLP
∗, (58) together with (27b)

implies that
ν∗L(x(t), y(t)) ≡ ν̂L (59)

where ν̂L is not necessarily zero.
We have obtained so far: ν(t) ≡ ν̂ and λ(t) ≡ λ∗.
Now, since λ̇ = 0, it follows from (27c) that CT v(t) ≡

CT v̂ for some constant vector v̂ or equivalently v(t) ≡
v̂ + β(t)1. Differentiating in time 1T (χv)−1v(t) gives 0 =
1T (χv)−1v̇ = (

∑
i∈N

1
χv
i
)β̇ which implies that β(t) ≡ β̂.

Suppose now that either Ṗ 6= 0 or π̇ 6= 0. Since CT v(t) ≡
CT v̂ and ν(t) ≡ ν̂, Ṗ and π̇ are constant. Thus, since the
trajectories are bounded, we must have Ṗ = 0 and π̇ = 0;
otherwise U(x, y) will grow unboundedly (contradiction).

It remains to show that ρ̇ = 0, i.e. ρ̇+ = ρ̇− = 0. Since
v(t) ≡ v̂, then argument inside (27e) and (27f) is constant.

Now consider any ρ+e , e ∈ E . Then we have three cases:
(i) ae(v̂i − v̂j)− P̄e > 0, (ii) ae(v̂i − v̂j)− P̄e < 0 and (iii)
ae(v̂i − v̂j) − P̄e = 0. Case (i) implies ρ+e (t) → ∞ which
cannot happen since the trajectories are bounded. Case (ii)
implies that ρ+e (t) ≡ 0 which implies that ρ̇+e = 0, and
case (iii) also implies ρ̇+e = 0. An analogous argument gives
ρ̇− = 0.

Thus, we have shown that M ⊆ E. Unfortunately,
since there is an affine space of equilibria (x∗, σ∗) in E,
Krasovskii-Lassale Invariance Principle does not guarantee
that (x(t), σ(t)) will converge to one specific (x∗, σ∗) value.

Fortunately, we can use structure of U(x, y) as in [23]
to achieve convergence to a single equilibrium. Since
(x(t), σ(t)) → M and (x(t), σ(t)) are bounded, then there
exists an infinite sequence of time values {tk} such that
(x(tk), σ(tk)) → (x̂∗, ŷ∗, ν̂∗L) ∈ M . Thus, using this specific
equilibrium (x̂∗, ŷ∗) in the definition of U(x, y), it follows
that U(x(tk), y(tk)) → 0, which by continuity of U(x, y)
implies that (x(t), y(t)) → (x̂∗, ŷ∗).

Thus, it follows that (x(t), σ(t)) converges to only one
optimal solution within M ⊆ E.

Finally, the following theorem show that under mild con-
ditions the system is able to restore the inter-area flows (2)
and maintain the line flows within the thermal limits (5).

Theorem 11 (Inter-area Constraints and Thermal Limits):
Given any primal-dual optimal solution (x∗, σ∗) ∈ E, the
optimal line flow vector P ∗ satisfies (2). Furthermore, if
P (0) = DBC

T θ0 and aij = Bij , then P ∗
ij = aij(v

∗
i − v∗j )

and therefore (5) holds.
Proof: By optimality, P ∗ and v∗ must satisfy

Pm − d∗ = CP ∗ = Lav
∗ = CDaC

T v∗ (60)

Therefore using primal feasibility, (3) and (60) we have

P̂ = Ĉ[DaC
T v∗ = EKCDaC

T v∗

= EKCP ∗ = Ĉ[P ∗

which is exactly (4).
Finally, to show that P ∗

ij = aij(v
∗
i −v∗j ) we will use (30c).

Integrating (30c) over time gives

P (t)− P (0) =

∫ t

0

DBC
T ν(s)ds.

Therefore, since P (t) → P ∗, we have P ∗ = P (0) +
DBC

T θ∗ where θ∗ is any finite vector satisfying CT θ∗ =∫∞
0

CT ν(s)ds.
Again by primal feasibility

CDaC
T v∗ = Lav

∗ = CP ∗ = C(P (0) +DBC
T θ∗)

= CDBC
T (θ0 + θ∗)

Since by assumption Da = DB then we must have v∗ =
(θ0 + θ∗) + α1 and it follows then that P ∗ = DBC

T (θ0 +
θ∗) = DBC

T (v∗ − α1) = DaC
T v∗. Therefore, since by

primal feasibility P ≤ DaC
T v∗ ≤ P̄ , then P ≤ P ∗ ≤ P̄ .



Remark 12: The assumption of Theorem 11 of having
P (0) = DBC

T θ0 is equivalent to substituting (30) with

ω̇G = M−1
G (Pm

G − (dG +DGωG)− CGDBC
T θ) (61a)

0 = Pm
L − (dL +DLωL)− CLDBC

T θ (61b)

θ̇ = ω (61c)

which is the linearization of the power network using phase
instead of line flows as states. Therefore, this assumption can
be done without loss of generality.

Fig. 1: IEEE 39 bus system: New England

VI. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme. We
consider the widely used IEEE 39 bus system, shown in
Figure 1, to test our scheme. We assume that the system has
two independent control areas that are connected through
lines (1, 2), (2, 3) and (26, 27). The network parameters
as well as the initial stationary point (pre fault state) were
obtained from the Power System Toolbox [37] data set.

Each bus is assumed to have a controllable load with Di =
[−dmax, dmax], with dmax = 1p.u. on a 100MVA base and
disutility function

ci(di) =

∫ di

0

tan

Å
π

2dmax
s

ã
ds

= −2dmax

π
ln

Å∣∣∣∣cosÅ π

2dmax
di

ã∣∣∣∣ã .
Thus, di(σi) = c′i

−1
(ωi + λi) =

2dmax

π arctan(ωi + λi). See
Figure 2 for an illustration of both ci(di) and di(σi).
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Fig. 2: Disutility ci(di) and load function di(ωi + λi)

Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity parameter

Di = 0.2 ∀i ∈ N and χv
i = ζλi = ζπk = ζρ

+

e = ζρ
−

e = 2,
for all i ∈ N , k ∈ K and e ∈ E . These parameter values
do not affect convergence, but in general they will affect
the convergence rate. The values of Pm are corrected so
that they initially add up to zero by evenly distributing
the mismatch among the load buses. P̂ is obtained from
the starting stationary condition. We initially set P̄ and P
sufficiently large so that they are not binding.

We simulate the OLFC-system as well as the swing dy-
namics (30) without load control (di = 0), after introducing a
perturbation at bus 29 of Pm

1 = −2p.u.. Figures 3 and 4 show
the evolution of the bus frequencies for the uncontrolled
swing dynamics (a), the OLFC system without inter-area
constraints (b), and the OLFC with area constraints (c).

It can be seen that while the swing dynamics alone fail
to recover the nominal frequency, the OLFC controllers can
jointly rebalance the power as well as recovering the nominal
frequency. The convergence of OLFC seems to be similar or
even better than the swing dynamics, as shown in Figures
3a and 3b, and Figures 4a and 4b.2 Moreover, the inter-area
constraints mitigates the propagation of the perturbation to
Area 2 and makes convergence even faster.
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Fig. 3: Frequency evolution: Area 1
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Fig. 4: Frequency evolution: Area 2

Finally, we illustrate the action of the thermal limit con-
straints by adding a constraint of P̄e = 2.6p.u. and P =
−2.6p.u. to the tie lines between areas. Figure 5 show the
values of the multipliers λi, that correspond to the Locational
Marginal Prices (LMPs), and the line flows of the tie lines
for the OLFC with inter area flow constraints, but without
thermal limits. It can be seen that neither the initial condition,
nor the new steady state satisfy the our line limit. However,
once we add thermal limits to our OLFC scheme in Figure 6
the system converges to a new operating point that satisfies
our constraints.

2Notice the difference in the y axis scale.
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Fig. 5: LMPs and Tie Lines without Thermal Limits
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Fig. 6: LMPs and Tie Lines with Thermal Limits

VII. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance and operational constraints of a power network after
a disturbance by dynamically adapting the loads. We show
that provided communication is allowed among neighboring
buses, it is possible to rebalance the power mismatch, restore
the nominal frequency, and maintain inter-area flow and
thermal limits. Our distributed solution converges for every
initial condition and numerical simulations are provided to
verify our findings.
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